EARLY-AGE EFFECTIVE ELASTIC PROPERTIES OF CEMENT-BASED COMPOSITES

Authors

  • Valentin Viktorovich Kravchenko Brest State Technical University

DOI:

https://doi.org/10.36773/1818-1112-2024-135-3-31-37

Keywords:

cement paste, concrete, analytical and numerical homogenization, multiscale structure, geometric shape

Abstract

The problem of the prediction the early age effective elastic properties of cement-based composites is one of the most important and at the same time complicated problems of concrete technology. Cement-based composites consist of a large number of randomly distributed phases with different geometric shapes and sizes at each structural level.

Currently, there are two common approaches to modeling the effective elastic properties of cement-based composites – analytical and numerical homogenization. Most of the researches of the effective properties of cement-based composites focused their attention on the effective medium theory as a part of analytical homogenization, in which all composite phases are considered as spherical inclusions leading to relatively simple computational models for prediction. This significant assumption affects the accuracy of predicting the effective properties, since it is a well-known fact that the real geometric shape of most phases of cement-based composites differs from spherical. One of the drawbacks of the effective medium theory is that solutions for non-spherical inclusions can only be received for a regular geometric shape representing an ellipsoid.

At the same time, one of the advantages of numerical homogenization based on finite element analysis is the possibility of calculating elastic properties for an arbitrary geometric shape of inclusions.

The purpose of the study is multiscale modelling the effective elastic properties of cement-based composites, using a combination of analytical and numerical homogenization, considering the geometric shape of the phases at each heterogeneous level, close to their real shape in the structure of composites.

Author Biography

Valentin Viktorovich Kravchenko, Brest State Technical University

Candidate of Technical Sciences, Doctoral Student, Brest State Technical University, Brest, Belarus.

References

Nilsen, A. U. Concrete: A three phase material / A. U. Nilsen, P. J. M. Monteiro // Cement and Concrete Research. – 1993. – Vol. 23, Iss. 1. – P. 147–151. – DOI: 10.1016/0008-8846(94)90102-3.

Moumen, A. E. Numerical evaluation of the representative volume element for random composites / A. E. Moumen, T. Kanit, A. Imad // European Journal of Mechanics - A/Solids. – 2021. – Vol 86, article 104181. – P. 1–20. – DOI: 10.1016/j.euromechsol.2020.104181.

Dvorak, G. J. Micromechanics of Composite Materials / G. J. Dvorak. – New York : Springer Science & Business Media, 2012. – 460 p. – DOI: 10.1007/978-94-007-4101-0.

Yvonnet, J. Computational Homogenization of Heterogeneous Materials with Finite Elements / J. Yvonnet. – New York : Springer Cham, 2019. – 223 p. – DOI: 10.1007/978-3-030-18383-7.

Zaoui, A. Continuum micromechanics: survey / A. Zaoui // Journal of Engineering Mechanics. – 2002. – Vol 128, Iss. 8. – P. 808–816. – DOI: 10.1061/(ASCE)0733-9399(2002)128:8(808).

Segura, N. J. Concentration tensors preserving elastic symmetry of multiphase composites / N. J. Segura, B. L. A. Pichler, C. Hellmich // Mechanics of Materials. – 2023. – Vol. 178, article 104555. – P. 1–12. – DOI: 10.1016/j.mechmat.2023.104555.

Kim, M. Differential Scheme Effective Medium Theory for Hot-Mix Asphalt |E*| Prediction / M. Kim, W. G. Buttlar // Journal of Materials in Civil Engineering. – 2011. – Vol. 23, Iss. 1. – P. 69–78. – DOI: 10.1061/(ASCE)MT.1943-5533.000002.

Michel, J. C. Effective properties of composite materials with periodic microstructure: a computational approach / J. C. Michel, H. Moulinec, P. Suquet // Computer Methods in Applied Mechanics and Engineering. – 1999. – Vol 172, Iss. 1–4. – P. 109–143. – DOI: 10.1016/S0045-7825(98)00227-8.

Bleyer, J. Numerical Tours of Computational Mechanics with FEniCS / J. Bleyer. – Genève: Zenodo, 2018. – 100 p. – DOI: 10.5281/zenodo.1287832.

Omairey, S. L. Development of an ABAQUS plugin tool for periodic RVE homogenisation / S. L. Omairey, P. D. Dunning, S. Sriramula // Engineering with Computers. – 2019. – Vol 35. – P. 567–577. – DOI: 10.1007/s00366-018-0616-4.

Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement / B. Lothenbach, T. Matschei, G. Möschner, F. P. Glasser // Cement and Concrete Research. – 2008. – Vol. 38, Iss. 1. – P. 1–18. – DOI: 10.1016/j.cemconres.2007.08.017.

Tennis, P. D. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes / P. D. Tennis, H. M. Jennings // Cement and Concrete Research. – 2000. – Vol. 30, Iss. 6. – P. 855–863. – DOI: 10.1016/S0008-8846(00)00257-X.

CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modelling Package: Version 3.0 : NIST Interagency Internal Report / National Institute of Standards and Technology ; ed. D. P. Bentz – Gaithersburg, 2005. – 227 p. – NISTIR 7232. – DOI: 10.6028/NIST.IR.7232.

Kravchenko, V. V. Modelling of the voxel-based microstructure of the cement paste / V. V. Kravchenko // Vestnik BSTU. – 2024. – Vol 1. – P. 14–18. – DOI: 10.36773/1818-1112-2024-133-1-14-18.

Stora, E. Influence of inclusion shapes on the effective linear elastic properties of hardened cement pastes / E. Stora, Q. C. He, B. Bary // Cement and Concrete Research. – 2006. – Vol. 36, Iss. 7. – P. 1330–1344. – DOI: 10.1016/j.cemconres.2006.02.007.

Sanahuja, J. Modelling elasticity of a hydrating cement paste / J. Sanahuja, L. Dormieux, G. Chanvillard // Cement and Concrete Research. – 2007. – Vol 37, Iss. 10. – P. 1427–1439. – DOI: 10.1016/j.cemconres.2007.07.003.

Sangryun, L. Theoretical study of the effective modulus of a composite considering the orientation distribution of the fillers and the interfacial damage / L. Sangryun, S. Ryu // European Journal of Mechanics - A/Solids. – 2018. – Vol 72. – P. 79–87. – DOI: 10.1016/j.euromechsol.2018.02.008.

Ulm, F. J. Is concrete a poromechanics materials? – A multiscale investigation of poroelastic properties / F. J. Ulm, G. Constantinides, F. H. Heukamp // Materials and Structures. – 2004. – Vol 37. – P. 43–58. – DOI: 10.1007/BF02481626.

Garboczi, E. J. Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations / E. J. Garboczi, J. G. Berryman // Mechanics of Materials. – 2001. – Vol. 33, Iss. 8. – P. 455–470. – DOI: 10.1016/S0167-6636(01)00067-9.

Rhardane, A. Development of a micro-mechanical model for the determination of damage properties of cement pastes / A. Rhardane, F. Grondin, S. Y. Alam // Construction and Building Materials. – 2020. – Vol. 261, article 120514. – P. 1–30. – DOI: 10.1016/j.conbuildmat.2020.120514.

Mura, T. Micromechanics of Defects in Solids / T. Mura. – Second edition. – Dordrecht : Springer, 1987. – 588 p. – DOI: 10.1007/978-94-009-3489-4.

Downloads

Published

2024-11-22

How to Cite

(1)
Kravchenko, V. V. EARLY-AGE EFFECTIVE ELASTIC PROPERTIES OF CEMENT-BASED COMPOSITES. Вестник БрГТУ 2024, 31-37.

Issue

Section

Civil and Environmental Engineering