THE USE OF ARTIFICIAL INTELLIGENCE IN THE ORGANIZATION OF TOURIST ROUTES ON THE EXAMPLE OF ENOTOURISM

Authors

DOI:

https://doi.org/10.36773/1818-1112-2025-138-3-185-192

Keywords:

artificial intelligence, enotourism, tourist routes, personalization, smart tourism, digitalization of tourism, Big Data, AR/VR technologies, Internet of Things (IoT), recommender systems, sustainable territorial development

Abstract

The article examines the theoretical and applied aspects of the use of artificial intelligence technologies in the formation and optimization of tourist routes in the field of enotourism under the conditions of the digital transformation of the industry. The relevance of the study is determined by the growing demand for personalized tourist products, the development of the smart tourism concept, and the necessity of introducing intelligent mechanisms for managing tourist flows in the cultural and gastronomic segment.

The purpose of the study is to identify the possibilities, advantages, and practical effects of applying artificial intelligence in the organization of enotourism routes, as well as to conduct their empirical assessment using international examples. The methodological basis includes methods of systems analysis, clustering, correlation analysis, machine learning algorithms, hybrid recommender systems, route optimization methods, and big data processing tools. The empirical base comprises information on more than 4,000 enotourism sites in Italy, France, Portugal, the United States, Russia and Georgia.

The role of artificial intelligence as a key element of the digital ecosystem of enotourism is demonstrated. The developed multi-level model of intelligent routing ensures the transition from static routes to adaptive personalized trajectories that take into account tourists’ preferences, seasonality, and logistical constraints.

Empirical results revealed a strong positive correlation between the level of digitalization of destinations and tourist satisfaction with AI-generated routes, as well as a relationship between the reduction of planning time and the increase in the profitability of wineries. A comparison with traditional and agency-based routes confirmed the advantages of AI in terms of personalization, optimality, cultural richness and economic efficiency.

Author Biographies

Emma Petrovna Golovach, Brest State Technical University

Doctor of Technical Sciences, Professor, Professor of the Department of Mechanical Engineering and Vehicle Operation, Brest State Technical University, Brest, Belarus.

Sergey Vladimirovich Montik, Brest State Technical University

Candidate of Technical Sciences, Associate Professor, Head of the Department of Mechanical Engineering and Vehicle Operation, Brest State Technical University, Brest, Belarus.

Anna Petrovna Golovach, Brest State Technical University

Senior Lecturer of the Department of Environmental Engineering and Chemistry, Brest State Technical University, Brest, Belarus.

Nikolay Sergeevich Montik, Brest State Technical University

Senior Lecturer of the Department of Intelligent Information Technologies, Brest State Technical University, Brest, Belarus.

References

UNWTO. Tourism Data Intelligence and Analytics for Sustainable Growth. – Madrid : UNWTO, 2023. – 186 p.

Smart tourism: foundations and developments / U. Gretzel, M. Sigala, Z. Xiang, C. Koo // Electronic Markets. – 2018. – Vol. 28, No. 2. – P. 151–163.

OECD. Tourism Trends and Policies 2024. – URL: https://www.oecd.org (date of accessed: 10.11.2025).

Smart tourism: foundations and developments / U. Gretzel, M. Sigala, Z. Xiang, C. Koo // Electronic Markets. – 2015. – Vol. 25, No. 3. – P. 179–188.

Buhalis, D. Smart hospitality – Interconnectivity and interoperability towards an ecosystem / D. Buhalis, R. Leung // International Journal of Hospitality Management. – 2023. – Vol. 109. – Art. 103426.

Zanker, M. Hybrid recommender systems in tourism / M. Zanker, F. Ricci // Information Technology & Tourism. – 2015. – Vol. 15, No. 4. – P. 315–341.

Li, S. Big data and tourism management / S. Li, Y. Wang // Tourism Management Perspectives. – 2018. – Vol. 28. – P. 59–66.

Atout France. Wine Tourism in France 2023. – Paris : Atout France, 2023. – 142 p.

Wine Tourism Worldwide Report 2024 / ed. by A. Alonso. – London : Routledge, 2024. – 312 p.

World Economic Forum. Travel & Tourism Development Index 2024. Geneva. – URL: https://www.weforum.org (date of access: 10.11.2025).

European Commission. Digital Economy and Society Index (DESI) 2024. Luxembourg. – URL: https://digital-strategy.ec.europa.eu (date of access: 10.11.2025).

World Bank. Digital Development Overview 2024. Washington. – URL: https://www.worldbank.org (date of access: 10.11.2025).

Xiang, Z. Big data analytics, tourism design, and smart tourism / Z. Xiang,

D. R. Fesenmaier // Journal of Destination Marketing & Management. – 2017. – Vol. 6. – P. 347–356.

Huang, C. AI-driven personalization in destination marketing / C. Huang, R. van der Veen // Tourism Management. – 2022. – Vol. 89. – Art. 104465.

Fuchs, M. Big data analytics for knowledge generation in tourism destinations / M. Fuchs, W. Hopken, M. Lexhagen // Journal of Destination Marketing & Management. – 2014. – Vol. 3, No. 4. – P. 198–209.

Sigala, M. Artificial intelligence and the future of tourism services / M. Sigala // Annals of Tourism Research. – 2022. – Vol. 93. – Art. 103131.

ITU. Artificial Intelligence and Big Data for Tourism Management. Geneva, 2024. – URL: https://www.itu.int (date of access: 10.11.2025).

Huang, C. AI-driven personalization in destination marketing / C. Huang, R. van der Veen // Tourism Management. – 2022. – Vol. 89. – Art. 104465.

Neuhofer, B. A typology of technology-enhanced tourism experiences / B. Neuhofer, D. Buhalis, A. Ladkin // International Journal of Tourism Research. – 2014. – Vol. 16, No. 4. – P. 340–350.

A systematic review of immersive virtual reality applications for education and training / J. Radianti, T. A. Majchrzak, J. Fromm, I. Wohlgenannt // Computers & Education. – 2020. – Vol. 147. – Art. 103778.

County of Napa. GIS Napa County Public Dataset. Napa Valley, 2024. – URL: https://www.countyofnapa.org (date of access: 10.11.2025).

Atout France. Tourisme et Numérique : Les territoires intelligents 2024. – Paris : Atout France, 2024. – 168 p.

Regione Toscana. Turismo e Innovazione Digitale 2023. Firenze. – URL: https://www.regione.toscana.it (date of access: 10.11.2025).

Turismo de Portugal. DataHub: Open Tourism Data Platform. – Lisbon, 2024. – URL: https://datahub.turismodeportugal.pt (date of access: 10.11.2025).

Turismo de Portugal. Douro Valley Data Portal. – Lisbon, 2024. – URL: https://www.visitportugal.com (date of access: 10.11.2025).

Visit Napa Valley. Visitor Profile Report 2024. Napa Valley Tourism Board. – URL: https://www.visitnapavalley.com (date of access: 10.11.2025).

VisitKuban : oтчет о развитии винного туризма Краснодарского края. Краснодар, 2024. – URL: https://visitkuban.ru (дата обращения: 10.11.2025).

Ростуризм. Цифровизация туристских услуг в России : отчет за 2023 год. – М., 2023. – URL: https://tourism.gov.ru (дата обращения: 10.11.2025).

Georgia Travel. Smart Tourism Development in Kakheti Region. – Tbilisi, 2024. – URL: https://georgia.travel (date of access: 10.11.2025).

TripAdvisor. Tourism Analytics & User Behavior Report 2024. – London, 2024. – URL: https://www.tripadvisor.com (date of access: 10.11.2025).

Georgian National Tourism Administration. Wine Routes of Georgia. – Tbilisi, 2024. – URL: https://gnta.ge (date of access: 10.11.2025).

Smart tourism: a state of the art / U. Gretzel, Z. Xiand, M. Sigala, Ch. Koo // Annals of Tourism Research. – 2015. – Vol. 52. – P. 1–33.

Spence, C. Multisensory flavor perception / C. Spence // Cell. – 2015. – Vol. 161, No. 1. – P. 24–35.

Copernicus Climate Service. Meteorological Data for Sustainable Tourism. – Brussels, 2024. – URL: https://climate.copernicus.eu (date of access: 10.11.2025).

OpenWineData Initiative. Global Wine Tourism Dataset 2024. – San Francisco, 2024. – URL: https://openwinedata.org (date of access: 10.11.2025).

Porter, M. E. How smart, connected products are transforming competition / M. E. Porter, J. E. Heppelmann // Harvard Business Review. – 2014. – Vol. 92, No. 11. – P. 64–88.

Mariani, M. Digitalization and innovation in tourism: a cross-country analysis / M. Mariani, M. Borghi // Journal of Travel Research. – 2021. – Vol. 60, No. 8. – P. 1678–1695.

Gajdosik, T. Tourism destinations and digital ecosystems: smart governance / T. Gajdosik // Sustainability. – 2020. – Vol. 12, No. 23. – Art. 9959.

Kaplan, A. Rulers of the world, unite! The challenges of artificial intelligence / A. Kaplan, M. Haenlein // Business Horizons. – 2020. – Vol. 63, No. 1. – P. 37–50.

Downloads

Published

2025-11-25

How to Cite

(1)
Golovach, E. P.; Montik, S. V.; Golovach, A. P.; Montik, N. S. THE USE OF ARTIFICIAL INTELLIGENCE IN THE ORGANIZATION OF TOURIST ROUTES ON THE EXAMPLE OF ENOTOURISM. Вестник БрГТУ 2025, 185-192.