COMPARATIVE STUDY ON BENDING PERFORMANCE NUMERICAL SIMULATION OF DIFFERENT TYPES OF FRP REINFORCED CONCRETE BEAMS BASED ON ANSYS
DOI:
https://doi.org/10.36773/1818-1112-2025-138-3-45-52Keywords:
FRP reinforcement, concrete beam, bending performance, numerical simulation, load-deflection curve, SOLID65, William – WarenkeAbstract
By simulating a three-point bending loading process, the failure modes, load-deflection curves, flexural stiffness, ultimate bearing capacity, and crack propagation modes of each model are compared and analyzed. Simulation results show that the reinforced concrete beam model (Steel-RC) exhibits typical elastoplastic behavior, ultimately resulting in ductile failure due to steel bar yielding (Pu ≈ 56,0 kN, δu ≈ 40,0 mm). All FRP-reinforced beam models adopted an over-reinforced design, and the final failure mode was the crushing of the concrete in the compression zone, exhibiting brittle failure characteristics. The mechanical properties of different FRP reinforcement materials, especially the elastic modulus, play a decisive role in the bending performance of beams: the CFRP reinforced beam model (Ef = 124,2 GPa) has the highest bending stiffness and ultimate bearing capacity (Pu ≈ 125,0 kN) and the lowest ultimate deflection (δu ≈ 30,0 mm); among all FRP reinforced beams, the GFRP reinforced beam model (Ef = 45,0 GPa) has the lowest post-cracking stiffness and ultimate bearing capacity (Pu ≈ 82,5 kN), and the largest ultimate deflection (Δu ≈ 40,0 mm); the performance of the AFRP reinforced beam model (Ef = 50,1 GPa) is between the two (Pu ≈ 86,4 kN, Δu ≈ 35,0 mm). This study confirms the effectiveness of the finite element method in simulating the stress behavior of FRP-reinforced concrete beams. The results quantify the key differences in flexural properties among different FRP reinforcement materials, providing an important numerical basis and design reference for the engineering community to rationally select FRP materials based on structural performance requirements (strength control or stiffness control) when facing durability challenges.
References
13.65. SOLID65 – 3-D Reinforced Concrete Solid / ANSYS Inc. // In ANSYS Mechanical APDL Theory Reference (Release 18.2). – 2017. – Retrieved November, 15.
Serviceability and flexural behavior of concrete beams reinforced with basalt fiber-reinforced polymer (BFRP) bars exposed to harsh conditions / H. Alkhraisha, N. Tello, F. Albed, H. Mhanna // Polymers. – 2020. – Vol. 12 (9). – P. 2110. – DOI: 10.3390/polym12092110.
Flexural strength of concrete beam reinforced with CFRP bars: A review / M. B. C. Bakar, R. S. M. Rashid, M. Amran [et al.] // Materials. – 2020. – Vol. 15 (3). – P. 1144. – DOI: 10.3390/ ma15031144.
Bai, H. Multiscale analysis of the flexural performance of FRP reinforced concrete structures. Canadian Journal of Civil Engineering / H. Bai, X. Yuan, Z. Gong // Advance online publication. – 2024. – DOI: 10.1139/cjce-2024-0005.
Baghi, H. Shear strengthening of reinforced concrete beams with SHCC-FRP panels : diss… Doctoral / Baghi Hadi ; Universidade do Minho ; Research Gate, 2015. – 236 l.
Serviceability limit state of FRP RC beams / C. Barris, M. Baena, L. Torres, K. Pilakoutas // Advances in Structural Engineering. – 2012. – Vol. 15 (4). – P. 653–664. – DOI: 10.1260/1369-4332.15.4.653.
Experimental study on flexural performance of corroded RC beams strengthened with AFRP sheets / Z.-C. Deng, H.-F. Li, L. Wang, L.-P. Zhang // Lin Key Engineering Materials. – 2009. –Vol. 405–406. – P. 343–349. – DOI: 10.4028/www.scientific.net/KEM.405-406.343.
CEE 142L reinforced concrete structures laboratory : Beam experiment / Department of Civil and Environmental Engineering. – Los Angeles : University of California, 2002. – URL: https://www.seas.ucla.edu/~wallace/ Files%20%20Teaching%20Page/CE%20142L/142L%20beam%20experiment.pdf (date of access: 29.10.2025).
Investigation of the shear behavior of concrete beams reinforced with FRP rebars and stirrups using ANN hybridized with genetic algorithm / B. Di, Y. Zheng, R. Qin, J. Lv // Polymers. – 2023. – Vol. 15 (13). – P. 2857. – DOI: 10.3390/polym15132857.
Evaluating the ultimate capacity of FRP reinforced concrete beams by using Eurocode 2 and ACI 440.1R-06 / A. Elsheikh, M. Adam, M. Said, A. Salah // Engineering Research Journal (ERJ). – 2024. – Vol. 53 (2). – P. 245–254. – DOI: 10.21608/erjsh.2023.241473.1227.
Halahla, A. Study the behavior of reinforced concrete beam using finite element analysis. / A. Halahla // In Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering, April 8–10, 2018, Budapest / Avestia Publishing. – Budapest, 2018. – 9 p. – DOI: 10.11159/icsenm18.103.
Karabulut, M. Nonlinear load-deflection analysis of steel rebar-reinforced concrete beams: Experimental, theoretical and machine learning analysis / M. Karabulut // Buildings. – 2025. – Vol. 15 (3). – P. 432. – DOI: 10.3390/buildings15030432.
Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars / M. S. Kim, A.-Ch. Kim, Y. H. Lee, A. Scanion // Structural Engineering and Mechanics. – 2011. – Vol. 38 (4). – P. 459–477. – DOI: 10.12989/sem.2011.38.4.459.
Li, M. Review on FRP strengthened concrete structures: Current advances, challenges and emerging innovations / M. Li, Y. Du, M. Li // Applied and Computational Engineering. – 2025. – Vol. 172. – P. 18–28. – DOI: 10.54254/2755-2721/2025.GL24467.
Renić, T. Ductility of concrete beams reinforced with FRP rebars / T. Renić, T. Kišiček // Buildings. – 2021. – Vol. 11 (9). – P. 424. – DOI: 10.3390/buildings11090424.
Saadi, G. M. S. Experimental investigation of CFRP high-strength concrete beams incorporating recycled concrete aggregate / G. M. S.Saadi, M. H. F. Rasheed, A. Z. S. Agha // Buildings. – Vol. 15 (9). – P. 1418. – DOI: 10.3390/buildings15091418.
Nonlinear finite element analysis for concrete deep beam reinforced with GFRP bars / M. Said, T. M. El-Rakeeb, A. Salah, N. M. Mohammed // Journal of Engineering Research and Reports. – 2021. – Vol. 21 (12). – P. 43–52. – DOI: 10.9734/jerr/2021/v21i1217517.
Sakar, G. Easy prestressing of FRP for strengthening RC beams: Experimental study with an analytical approach / G. H. Sakar, K. Celik // Polymers. – 2025. – Vol. 17 (12). – P. 1628. – DOI: 10.3390/polym17121628.
Salem, M. Nonlinear finite element analysis of high and ultra-high strength concrete beams reinforced with FRP bars / M. Salem, M. S. Issa // HBRC Journa. – 2023. – Vol. 19 (1). – P. 15–31. – DOI: 10.1080/16874048.2023.2170765.
Sammen, S. S. Nonlinear finite element analysis of concrete beam reinforced with fiber reinforced polymer (FRM) / S. S. Sammen, Q. W. Ahmed, S. N. Al-karawi // IOP Conference Series: Materials Science and Engineering. – Vol. 518 (2). – DOI: 10.1088/1757-899X/518/2/022086.
The mechanical and environmental performance of fiber-reinforced polymers in concrete structures: Opportunities, challenges and future directions / S. Sbahieh, U. A. Ebead, S. G. Al-Ghamdi, M. Rabie // Buildings. – 2022. – Vol. 12 (9). – P. 1417. – DOI: 10.3390/buildings12091417.
Sbahieh, S. A comparative life cycle assessment of fiber-reinforced polymers as a sustainable reinforcement option in concrete beams / S. Sbahieh, G. McKay, S. G. Al-Ghamdi // Frontiers in Built Environment. – 2023. – Vol. 9. – P. 1194121. – DOI: 10.3389/fbuil.2023.1194121.
Experimental study on the flexural performance of GFRP-reinforced concrete beams with a prefabricated permanent UHPC formwork / Y. Su, J. Shang, C. Jin [et al.] // Journal of Composites for Construction. – 2024. – Vol. 29 (1). – DOI: 10.1061/JCCOF2.CCENG-4835.
Tran, H. T. Flexural behavior of beams reinforced with FRP bars: Test database, design guideline assessment, and reliability evaluation / H. T. Tran, T. Nguyen-Tho // Buildings. – 2025. – Vol. 15 (18). – P. 3373. – DOI: 10.3390/buildings15183373.
Tran, H. N. State-of-the-art review of studies on the flexural behavior and design of FRP-reinforced concrete beams / H. T. Tran, K. C. T. Nguyen, H.-B. Dinh // Materials. – 2025. – Vol. 18 (14). – P. 3295. – DOI: 10.3390/ma18143295.
Application of fiber-reinforced polymer (FRP) composites in mitigation measures for dam safety risks: A review / L. Zhao, F. Xiao, P. Lin, G. Bai // Buildings. – 2025. – Vol. 15 (19). – P. 3558. – DOI: 10.3390/buildings15193558.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only. Users may not prevent other individuals from taking any actions allowed by the license.


