MICROSTRUCTURE OF RAPIDLY SOLIDIFIED ALLOY Al-1.5 WT.% Pb
DOI:
https://doi.org/10.36773/1818-1112-2024-135-3-81-84Keywords:
ultra-rapid quenching from melt, rapidly solidified foils of monotectic alloy Al-1.5 wt.% Pb, cellular structure, dispersed lead particlesAbstract
Ultra-rapid quenching from the melt makes it possible to obtain a significant refinement of the structural components of alloys, a significant increase in the mutual solubility of components during the formation of solid solutions, and the release of metastable phases. When using the ultrafast quenching method, the cooling rate of the liquid reaches 105 K/s and higher. Aluminum alloys doped with bismuth and lead can be used to generate hydrogen by their interaction with water. During ultra-fast quenching from the melt, a microcrystalline structure is formed containing dispersed precipitates of the second component. Foils of the Al-1.5 wt. % Pb alloy are obtained from a melt droplet weighing approximately 0.3 g, injected onto the inner polished surface of a rapidly rotating copper cylinder, where it spreads and solidifies into a foil. The estimated cooling rate of the melt reached 106 K/s. A cellular structure is formed in the Al-1.5 wt. % Pb foil layer adjacent to the free surface. Dispersed lead particles are located at the cell boundaries and in the cell volume. The shape of the lead particles is close to spherical, which is due to the minimum value of the surface energy of the alloy. Isothermal annealing of rapidly solidified foils of the alloy under study at 295 °C did not have a significant effect on the average diameter of lead particle cross-sections, while annealing at 400 °C caused their monotonous growth. With an increase in the annealing temperature above 400 °C, a stronger growth of lead particles located at the grain boundaries is observed than in the volume of their cells. In rapidly solidified foils of the alloy under study, a (111) texture is formed. This is explained by the fact that in the direction of heat removal, predominantly those grains grow whose {111} planes coincide with the interphase boundary and are parallel to the crystallizer surface.
References
Troickij, O. A. Fizicheskie osnovy i tekhnologii obrabotki sovremennyh materialov : v 2 t. / O. A. Troickij, YU. A. Baranov, YU. D. Avraamov. – Moskva–Izhevsk, 2004. – T. 1. – 468 s.
Avraamov, YU. S. Splavy na osnove sistem s ogranichennoj rastvorimost'yu v zhidkom sostoyanii (teoriya, tekhnologiya, struktura, svojstva) / YU. S. Avraamov, A. D. SHlyapin. – M. : Interkontakt nauki, 2002. – 371 s.
Lyakishev, N. P. Diagrammy sostoyaniya dvojnyh metallicheskih system : spravochnik / pod obshchej red. N. P. Lyakisheva. – M. : Mashinostroenie, 1996. – T. 1. – 992 s.
Patent US 20080063597 : Power Generation from Solid Aluminum / M. J. Woodall, T. Z. Jeffrey, R. A. Charles. – 2008.
Patent RU 2356830C2, MPK C01B 3/08 (2006.01). Sposob polucheniya vodoroda : № 2007123715/15 : zayavleno 26.06.2007 : opubl. 27.05.2009 / K. N. Koshkin, V. V. Semenov, G. V. Seropyan, K. H. Urusov. – 2009. – 5 s.
Patent RU 2606449, MPK 2 606 449(13)C2. Sposob aktivacii alyuminiya dlya polucheniya vodoroda : № 2014143582 : zayavleno 29.10.2014 : opubl. 10.01.2017 / E. I. SHkol'nikov, I. N. Atmanyuk, A. V. Dolzhenko, I. V. YAkilkin. – 2017. – 1 s.
Liquid Phase-enabled Reaction of Al-Ga and Al-In-Sn Alloys with Water / J. T. Ziebarth, M. J. Woodall, R. A. Kramer, Go Choi // International Journal of Hydrogen Energy. – 2011. – No. 36(9). – P. 5271–5279. – DOI: 10.1016/j.ijhydene.2011.01.127.
Kinetika i mehanizm corozionnogo rastreskivanija aluminija / L. F. Kozin, S. V. Volkov, S. G. Goncharenko [i dr.] // Ukrainiskii chemicheskii Zhurnal. – 2009. – Vol. 75, No. 11. – S. 3–11.
Kinetika i mehanizm vzaimodejstvija s vodoj aluminija i magnija / L. F. Kozin [et al.] // Physicahemija poverhnosti i zashchita materialov. – 2011. – Vol. 47, No. 2. – S. 144–153.
Kudryasheva, O. B. Opredelenie optimal'nyh parametrov reakcij polucheniya vody na osnove okisleniya nanoporoshka alyuminiya / O. B. Kudryasheva // YUzhno-Sibirskij nauchnyj zhurnal. – 2017. – № 4 (20). – S. 43–47.
Salli, I. V. Kristallizaciya pri sverhvysokih skorostyah ohlazhdeniya / I. V. Salli. – Kiev : Navukova dumka,1972. – 136 s.
Miroshnichenko, I. S. Zakalka iz zhidkogo sostoyaniya / I. S. Miroshnichenko. – M. : Metallurgiya, 1982. – 168 s.
Dobatkin, V. I. Bystrozakristallizovannye alyuminievye splavy / V. I. Dobatkin, V. I. Elagin, V. M. Fedorov. – M. : VILS, 1995. – 341 s.
Pinchuk, A. I. Plastifikaciya monokristallov vismuta pri odnovremennom nalozhenii elektricheskogo i magnitnogo polya / A. I. Pinchuk, V. S. Savenko, S. D. SHavrej // Izvestiya Akademii Nauk. Seriya fizicheskaya. – 1997. – T. 61, № 5. – S. 932–936.
Shavrei, S. D. A decrease in the mobility and multiplication of twinning dislocations in bismuth crystals exposed to constant magnetic field / S. D. Shavrei, A. I. Pinchook // Technical Physics Letters. – 2003. – Vol. 29, No 8. – P. 632–633. – DOI: 10.1134/1.1606770.
Shepelevich, V. G. Structure of rapidly solidified Al – (0,25 – 2,0) wt. % Bi alloys / V. G. Shepelevich // Inorganic Materials. Applied Research. – 2023. – Vol. 3. – Р. 720–723.
SHepelevich, V. G. Poluchenie vodoroda pri vzaimodejstvii bystrozatverdevshih fol'g splava iz alyuminievogo loma i vismuta s vodoj / V. G. SHepelevich // Fizika i himiya obrabotki materialov. – 2024. – № 3. – S. 49–55.
SHepelevich, V. G. Bystrozatverdevshie legkoplavkie splavy / V. G. SHepelevich. – Minsk : BGU, 2015. – 192 s.
Vasserman, G. Tekstury metallicheskih materialov / G. Vasserman, I. Greven. – M. : Metallurgiya, 1969. – 655 s.
Salticov, S. A. Stereometricheskaja metallografija / S. A. Salticov. – M. : Metallrgija, 1976. – 272 s.
Sheng, H. W. Melting and freezing behaviors of Pb nanoparticles embedded in an Al matrix / H. W. Sheng, Z. Q. Hu, K. Lu // Nanostructured Mater. – 1997. – Vol. 9, Is. 1–8. – P. 661–664. – DOI: 10.1016/S0965-9773(97)00145-1.
Gabrisch, Heika. Equilibrium shape and interface roughening of small liquid Pb inclusion in solid Al / Heika Gabrisch, L. Kjeldgard, E. Johnson, Ulrich Dahman // Acta Materialia. – 2001. – Vol. 49(20). – P. 4259–4264. – DOI:10.1016/S1359-6454(01)00307-X.
Neumerzhickaya, E. YU. Struktura, svojstva i termicheskaya stabil'nost' bystrozatverdevshih fol'g splavov alyuminiya s hromom, nikelem i margancem / E. YU. Neumerzhickaya, V. G. SHepelevich // Perspektivnye materialy. – 2005. – № 4. – S. 69–73.
Sivcova, P. A. Bystrozatverdevshie splavy alyuminiya s perekhodnymi metallami / P. A. Sivcova, V. G. SHepelevich. – Minsk : RIVSH, 2013. – 176 s.
Li, D. Y. A possible rule for surface packing density in the formation of (111) texture in solidified FCC metals / D. Y. Li, I. A. Szpunur // Journal of Materials Science Letters. – 1994. – Vol. 13, No 21. – P. 1521–1523. – DOI: 10.1007/bf00626496.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only. Users may not prevent other individuals from taking any actions allowed by the license.