FORMATS OF THE METHOD OF RELIABILITY FACTORS IN THE DESIGN OF REINFORCED CONCRETE STRUCTURES BASED ON COMPUTER MODELS
DOI:
https://doi.org/10.36773/1818-1112-2024-134-2-34-40Keywords:
safety format, nonlinear load-bearing capacity models, finite element method, reinforced concrete structures, probabilistic method, reliability factors, uncertainties, EurocodeAbstract
In international regulatory documents, there are requirements related to the nonlinear finite element analysis of structures and structural systems, and most
importantly to ensuring the required safety format when performing such an analysis. The introduction of requirements related to the nonlinear analysis of
structures into regulatory documents is due both to the increased interest in this problem during the transition to new design methods, and new opportunities due
to the development of computer technology and software at various levels, which creates opportunities for such design. Considering that this direction is new and
not formed, which causes a number of terminological and methodological inconsistencies in the scientific literature, this article critically analyzes approaches to ensuring the required safety format when performing nonlinear analysis (without focusing on the implementation of the nonlinear resistance model proper) included in the draft regulatory documents prEN1990 and prEN1992. Based on an analytical review of the research, a description and critical analysis of the safety formats of reinforced concrete structures designed on the basis of nonlinear finite element models are presented. The safety formats are systematized depending (i) on how the uncertainty of the basic variables is taken into account, (ii) on how the variability of the basic
variables and model uncertainty are introduced, (iii) on whether the values of the partial factors are fixed or adjustable. Two main tasks have been formed that
restrain the use of nonlinear finite element models in everyday design. The first is related to the methods of estimating the coefficient of variation of the loadbearing
capacity. The second is related to the absence or lack of knowledge of the statistical parameters of the uncertainty of finite element models.
References
Shear resistance evaluation of prestressed concrete bridge beams: fib Model Code 2010 guidelines for level IV approximations / B. Belletti [et al.] // Structural Concrete. – 2013. – Vol. 14 (3). – P. 242–249. – https://doi.org/10.1002/suco.201200046.
Schlune, H. Safety formats for nonlinear analysis tested on concrete beams subjected to shear forces and bending moments / H. Schlune, M. Plos, K. Gylltoft // Engineering Structures. – 2011. – Vol. 33. – P. 2350–2356. – https://doi.org/10.1016/j.engstruct.2011.04.008.
Olalusi, O. B. Model uncertainties and bias in shear strength predictions of slender stirrup reinforced concrete beams / O. B. Olalusi, C. Viljoen // Structural Concrete. – 2019. – Vol. 21. – P. 316–332. – https://doi.org/10.1002/suco.201800273.
Non-linear material modelling strategy for conventional and highperformance concrete assisted by testing / N. Pressmair [et al.] // Cement and Concrete Research. – 2022. – Vol. 161. – Paper 106933. – https://doi.org/10.1016/j.cemconres.2022.106933.
Рахмонов, А. Д. Компьютерное моделирование для исследования напряженно-деформированного состояния балок с комбинированным армированием / А. Д. Рахмонов, Н. П. Соловьев, В. М. Поздеев // Вестник МГСУ. – 2014. – № 1. – С. 187–195.
Сафаров, А. Р. Реализация численной модели бетона CSCM применительно к отечественным классам бетонов / А. Р. Сафаров, В. Б. Дорожинский, В. И. Андреев // Вестник МГСУ. – 2023. – Т. 18. – № 4. – С. 545–555. – https://doi.org/10.22227/1997-0935.2023.4.545-555.
Тур, В. В. Концепция проектирования строительных конструкций на основе численных моделей сопротивления / В. В. Тур, В. В. Надольский // Строительство и реконструкция. – 2022. – № 6(104). – С. 78–90. – https://doi.org/10.33979/2073-7416-2022-104-6-78-90.
Non-linear finite element analyses applicable for the design of large reinforced concrete structures / M. Engen [et al.] // European Journal of Environmental and Civil Engineering. – 2017. – Vol. 23. – P. 1381–1403. – https://doi.org/10.1080/19648189.2017.1348993.
Тамразян, А. Г. Анализ надежности железобетонной плиты с корродированной арматурой / А. Г. Тамразян, Т. А. Мацеевич // Строительство и реконструкция. – 2022. – № 1(99). – С. 89–98. – https://doi.org/10.33979/2073-7416-2022-99-1-89-98.
Cervenka, V. Reliability – based non-linear analysis according to fib Model Code 2010 / V. Cervenka // Structures Concrete, Journal of fib. – 2013. – Vol. 14. – Р. 19–28. – https://doi.org/10.1002/suco.201200022.
Allaix, D. L. Global safety format for non-linear analysis of reinforced concrete structures / D. L. Allaix, V. I. Carbone, G. Mancini // Structural Concrete. – 2013. – Vol. 14(1). – P. 29–42. – https://doi.org/10.1002/suco.201200017.
Shlune, H. Safety format for non-linear analysis of concrete structures / H. Shlune, K. Gylltoft, M. Plos // Magazine of Concrete Research. – 2012. – Vol. 64(7). – P. 563–74.
Sykora, M. Safety format for non-linear analysis in the model code – verification of reliability level / M. Sykora, M. Holicky // Proceeding of fib symposium on concrete engineering for excellence and efficiency. – 2011. – P. 943–946.
Cervenka, V. Global safety formats in fib Model Code 2010 for design of concrete structures / V. Cervenka // Proceedings of the 11th Probabilistic Workshop, Brno, – 2013. – ID: 215762212.
Partial safety factor for resistance model uncertainties in 2D nonlinear finite element analysis of reinforced concrete structures / P. Castaldo [et al.] // Engineering Structures. – 2018. – Vol. 176. – P. 746–762. – https://doi.org/10.1016/j.engstruct.2018.09.041.
Olsson, A. On Latin hypercube sampling for structural reliability analysis / A. Olsson, G. Sandberg, O. Dahlblom // Structural Safety. – 2003. – Vol. 25(1). – P. 47–68.
Vořechovsk, M. Correlation control in small-sample Monte Carlo type simulations I: a simulated annealing approach / M. Vořechovsk, D. Novak // Probabilistic Engineering Mechanics. – 2009. – Vol. 24 (3). – P. 452–462.
Харченко, А. О. Использование вероятностных методов оценки надежности технических объектов на примере технологических и автомобильных систем / А. О. Харченко, А. А. Харченко, Е. А. Владецкая // Мир транспорта и технологических машин. – 2019. – № 4 (67). – С. 3–10.
Лизогуб, А. А. Вероятностный подход к оценке живучести конструктивных систем из сборного и монолитного железобетона / А. А. Лизогуб, А. В. Тур, В. В. Тур // Строительство и реконструкция. – 2023. – № 4 (108). – С. 93–105. – https://doi.org/10.33979/2073-7416-2023-108.
Sattler, F. Probabilistic and semi-probabilistic analyses of bridge structures – multi-level modelling based assessment of existing structures / F. Sattler, A. Strauss // Proceedings of the 1st conference of the European association on quality control of bridges and structures. – 2021. – Vol. 110. – P. 962–970. – https://doi.org/10.1007/978-3-030-91877-4.
Stochastic modelling and assessment of long-span precast prestressed concrete elements failing in shear / O. Slowik [et al.] // Engineering Structures. – 2021. – Vol. 228. – Paper 111500. – https://doi.org/10.1016/j.engstruct.2020.111500.
Перельмутер, А. В. Готовы ли мы перейти к нелинейному анализу при проектировании? / А. В. Перельмутер, В. В. Тур // International Journal for Computational Civil and Structural Engineering. – 2017. – Vol. 13. – P. 86–102.
Надольский, В. В. Коэффициенты надежности для нелинейных моделей несущей способности балок с гибкой стенкой / В. В. Надольский // Вестник МГСУ. – 2023. – Т. 18. – № 6. – С. 852–863. – https://doi.org/10.22227/1997-0935.2023.6.852-863.
Novak, L. Estimation of coefficient of variation for structural analysis: the correlation interval approach / L. Novak, D. Novak // Structural Safety. – 2021. – Vol. 92. – Paper 102101. – https://doi.org/10.1016/j.strusafe.2021.102101.
Соловьев, С. А. Метод вероятностного анализа надежности элементов конструкций на основе граничных функций распределения / С. А. Соловьев, А. А. Соловьева // Вестник МГСУ. – 2023. – № 18 (10). – С. 1545–1555. – https://doi.org/10.22227/1997-0935.2023.10.1545-1555.
Castaldo, P. Safety formats for non-linear finite element analysis of reinforced concrete structures: discussion, comparison and proposals / P. Castaldo, D. Gino, G. Mancini // Engineering Structures. – 2019. – Vol. 193. – P. 136–153. – https://doi.org/10.1016/j.engstruct.201.
Aleatory uncertainties with global resistance safety factors for nonlinear analyses of slender reinforced concrete columns / P. Castaldo [et al.] // Engineering Structures. – 2022. – Vol. 255. – Paper 113920. – https://doi.org/10.1016/j.engstruct.2022.113920.
Тур, В. В. Калибровка значений частных коэффициентов для проверок предельных состояний несущей способности стальных конструкций для условий Республики Беларусь. Часть 2 / В. В. Тур, В. В. Надольский // Строительство и реконструкция. – 2016. – № 5 (67). – С. 69–75.
Bakeer, T. General partial safety factor theory for the assessment of the reliability of nonlinear structural systems / T. Bakeer // Reliability Engineering & System Safety. – 2023. – Vol. 234. – Paper 109150. – https://doi.org/10.1016/j.ress.2023.109150.
Comparison of advanced semi-probabilistic methods for design and assessment of concrete structures / L. Novak [et al.] // Structural Concrete. – 2022. – Vol. 24. – P. 771–787. – https://doi.org/10.1002/suco.202200179.
Уткин, В. С. Расчет несущих элементов конструкций по заданному значению надежности при неполной статистической информации / В. С. Уткин, С. А. Соловьев, О. В. Ярыгина // Строительство и реконструкция. – 2020. – № 1(87). – С. 81–91. – https://doi.org/10.33979/2073-7416-2020-87-1-81-91.
Надольский, В. В. Оценка расчетного значения несущей способности стальных элементов, проектируемых на основе численных моделей / В. В. Надольский // Вестник МГСУ. – 2023. – Т. 18. – Вып. 3. – С. 367–378. – https://doi.org/10.22227/1997-0935.2023.3.367-378.
Caspeele, R. Validation of the harmonized partial factor method for design and assessment of concrete structures as proposed for fib model code 2020 / R. Caspeele, Den Hende K. Van // Structural Concrete. – 2023. – Vol. 24. – P. 4368–4376. – https://doi.org/10.1002/suco.202201109.
Partial factor methods for existing structures according to fib Bulletin 80: Assessment of an existing prestressed concrete bridge / D. Gino [et al.] // Structural Concrete. – 2020. – Vol. 21. – P. 15–31. – https://doi.org/10.1002/suco.201900231.
Slobbe, A. Reliability-based calibration of design code formulas: Application to shear resistance formulas for reinforced concrete members without shear reinforcement / A. Slobbe, A. Rózsás, Y. Yang // Structural Concrete. – 2023. – Vol. 24. – P. 2979–3001. – https://doi.org/10.1002/suco.202200583.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Brest State Technical University
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only. Users may not prevent other individuals from taking any actions allowed by the license.