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Abstract 
The paper proposes a simpler technique for producing an idealization of curved box-girder type bridge decking under dynamic stresses produced 

by earthquake related excitation. The analysis focuses on two types of bridge decks with curved cellular structures, examining both single-cell 
and multiple-cell configurations. This approach may be used to rectangular and trapezoidal box-girder sections with both equal and unequal dimensions 
of cells. The proposed element “Panel Element (PE)” is coded as Component Element (CE) and has proved to be capable of modeling a full plane panel 
of a curved cellular deck in its three-dimensional behavior by one element only. For verification purpose and to demonstrate the range of applicability 
of the new idealization technique, a comparative study was made with the Finite Element Method (FEM), as a standard procedure, used to idealize 
the box-girder bridge decks. Different configurations of curved box-girder bridge decks are considered to provide a thorough understanding 
of the dynamic behavior of the curved bridge deck when acted upon by earthquake-based excitation besides the validation purposes. A computer 
program using (MATLAB R2012b) is specially written using the proposed algorithm of the new idealization technique to evaluate the earthquake 
analysis results. Comparison was made with those evaluated by the finite element approach using the ready software (ANSYS 12.0) to check 
the adequacy and suitability of the proposed element in analyzing the box-girder concrete bridge decks. The results showed that the Panel Element 
Method (PEM) has proved to be valid in estimating the earthquake response for both cases of single and double cell bridge decks, for all the ranges 
of the aspect ratios; the results obtained by the Panel Element Method (PEM) are acceptable, with an error of less than (12 %) in deflection and less 
than (18 %) in moments and shear forces for the cases of very large aspect ratios. This research demonstrates the validity of the proposed method 
"Panel Element Method (PEM)" with wide range of applicability for the dynamic behaviors of free and forced vibration response analysis 
and the approximate earthquake response analysis of the curved box-girder type of bridge decks of different configurations. 
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КРИВИЗНА ИМЕЕТ ЗНАЧЕНИЕ: РАСКРЫВАЯ СЕЙСМИЧЕСКИЙ ОТКЛИК СОТОВЫХ МОСТОВ 
 

Ф. А. Р. Темими, А. Х. Ф. Обайди, Н. А. Ермошин 
Реферат 
В статье предлагается упрощенная методика идеализации криволинейных сотовых пролетных строений мостов при динамических 

нагрузках, вызванных сейсмическими воздействиями. Анализ сосредоточен на двух типах пролетных строений с криволинейными ячеистыми 
структурами: одно- и многосоточных конфигурациях. Данный подход может быть применен к прямоугольным и трапецеидальным ячеистым 
сечениям с ячейками как равных, так и неравных размеров. Предложенный элемент «Панельный элемент» программно реализован в виде 
компонентного элемента и доказал свою способность моделировать полноразмерную панель криволинейного сотового настила в трехмерном 
поведении всего одним элементом. С целью верификации и демонстрации диапазона применимости новой методики идеализации было 
проведено сравнительное исследование с методом конечных элементов (МКЭ), который используется в качестве стандартной процедуры 
для идеализации сотовых пролетных строений. Рассматривались различные конфигурации криволинейных сотовых мостовых настилов 
для получения всестороннего понимания динамического поведения криволинейного пролетного строения при сейсмических воздействиях, 
помимо целей валидации. С использованием предложенного алгоритма новой методики идеализации была специально написана 
компьютерная программа на (MATLAB R2012b) для оценки результатов сейсмического анализа. Проведено сравнение с данными, 
полученными методом конечных элементов с использованием готового программного обеспечения (ANSYS 12.0), для проверки адекватности 
и пригодности предложенного элемента для анализа сотовых железобетонных пролетных строений. Результаты показали, что метод 
панельных элементов (МПЭ) доказал свою состоятельность в оценке сейсмического отклика как для одно-, так и для двухсотовых пролетных 
строений во всем диапазоне значений коэффициентов форм; полученные с помощью метода панельных элементов (МПЭ) результаты 
приемлемы, с погрешностью менее (12 %) для прогибов и менее (18 %) для моментов и поперечных сил в случаях очень больших 
коэффициентов форм. Данное исследование демонстрирует обоснованность предложенного метода «Метода панельных элементов (МПЭ)» 
с широким диапазоном применимости для анализа динамического поведения при свободных и вынужденных колебаниях, а также 
для приближенного анализа сейсмического отклика криволинейных сотовых пролетных строений различных конфигураций. 

 
Ключевые слова: криволинейные сотовые мосты, сейсмический отклик, метод панельных элементов, метод конечных элементов, 

коробчатая балка, сотовые мосты. 
 

 
Introduction 
The safety of highway bridges is essential to the sustainable economic 

prosperity of our community. Highway bridge shapes may vary greatly de-
pending on the practical requirements of the project. Curved bridges are 
commonly selected over linear bridges due to their lower cost and ease of 
construction. (Tao and Guan, 2023) [1]. Curved bridges are often observed 
in urban and mountainous areas due to their favorable compatibility with 
the surrounding terrain and their capability to permit grade crossings and 

overpasses with limited space (Kahan et al., 1996) [2]. Furthermore, 
in order to mitigate the build-up of driver fatigue resulting from driving 
on lengthy and straight bridges with similar conditions, an increasing 
number of curved bridges are being employed as substitutes for long 
linear bridges. Curved bridges are occasionally constructed to harmo-
nize with the surrounding environment for aesthetic reasons. Curved 
overpass bridges are increasingly favored as a solution to the city's 
significant traffic problems (Tao and Guan, 2023) [1]. Curved bridges 
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of different kinds have a significant impact on managing urban traffic. 
Nevertheless, these bridges are more vulnerable to damage caused by 
earthquakes compared to traditional bridges, mostly due to their irregu-
lar shape and uneven distribution of weight. Research has demonstrat-
ed that the spatial asymmetry of ground movements would negatively 
impact curved bridges. 

The cellular cross section of the curved box-girder bridge (Figure 1) 
increases its efficiency by resisting the high torsional moment. Aesthetics, 
economy, stability, efficacy, and utility all contribute to the curved bridge's 
widespread recognition. Circular plans with transition curves are common 
when choosing these. Since curved bridges in the plan experience both 
bending and torsion due to the curvature of the girders, their analysis is 
more involved than that of straight bridges. According to Agarwal et al. 
(2023) [3], a curved bridge's optimal section for design should possess 
strong torsional stiffness.    
 

 
 

Figure 1 – Curved box-girder bridge deck (Agarwal et al., 2023) [3] 
 

Literature review 
Few studies have been conducted on the seismic behavior of curved 

bridges subjected to ground motion exhibiting spatial variation. Sextos et 
al. (2004) [4] examined the seismic behavior of curved bridges subjected 
to multi-support excitation. They achieved this by creating synthetic multi-
support ground motion. A study conducted by Burdette et al. (2008) [5] 
examined the impact of incoherence and traveling waves on the seismic 
response of both straight and curved bridges. Using the finite element-
based software ANSYS, Fangping and Jianting (2012) [6] studied the 
impact of curvature on prestressed tendons deformation in curved bridg-
es. The mid-span deflections were assessed by modeling and analyzing 
five distinct curved bridges. Cho et al. (2013) [7] demonstrated the load 
distribution in straight prestressed concrete (PSC) girder bridges using 
Finite Element Method (FEM). The GDF was evaluated against the 
AASHTO LRFD, AASHTO standard factors, and the findings of finite 
element calculations. Formulas have been proposed to predict the distri-
bution of live loads in PSC girder bridges for preliminary design purposes. 
Chen and Wang (2014) [8] studied the behavior of curved girder bridges 
under spatially varying ground motion, with special emphasis on studying 
random vibration angles. Cheng et al. (2016) [9] used shaking table tests 
to show how important it is to think about the multi-support excitation 
effect when analyzing irregular high-rise curved girder bridges for earth-
quakes. Bahadur et al. (2017) [10] studied the stresses and deflections of 
a curved, rectangular plate that had only one side supporting it in 2017 
and observed how the curve angle, span-thickness ratio, and aspect ratio 
affected the plate. Curved bridges are more susceptible to travel wave 
influence, according to shaking table experiments conducted by Li et al. 
(2017) [11]. Said and Khalaf (2018) [12] looked at a horizontally bent box 
girder bridge and found the live load moment distribution factor using 
experimental data that was loaded with AASTHO loads. Agarwal et al. 

(2019) [13] investigated the maximum bending moment and shear 
strength in a single cell inclined box girder bridge using finite element 
analysis. The researchers examined the effect of span, beam spacing, 
and span depth ratio on a skewed box girder bridge. In their study, Yuan 
et al. (2022) [14] investigated the mechanical properties and torsional 
behavior of a curved square-girder bridge. Further finite element analyses 
have quantified the response of curved girder and box-girder bridges to 
various loads, examining parameters such as curvature angle and span-
depth ratio [10]. 

More lately, Temimi, et al. (2025), focused on the vibration character-
istics of 3D curved box-girder bridges by using the Panel Element Meth-
od, and using the finite element method by ANSYS program for many 
deck types of box-girder bridges under earthquake loads [15]. 

Collectively, this body of literature confirms that curvature fundamen-
tally alters a bridge's seismic and structural response, necessitating spe-
cialized analysis that accounts for both spatial ground motion variation 
and unique curvature-induced effects. 

 
Research Importance   
The majority of curved bridge assessments currently concentrate on 

static and linear dynamic evaluations, which take into consideration pa-
rameters such as natural frequencies, modal shapes, and damping condi-
tions. This analysis aims to suggest recommendations for structural de-
sign and spectrum analysis, including support arrangements. The rela-
tionship between natural frequency, bridge connections, and dynamic 
performance in basic box girder curved bridges, as well as the effect of 
radius curvature, has been studied before (Jeon et al., 2016) [16]. It is 
important to study how different properties affect the typical shapes of 
curved bridges. 

In present times, design codes often advise examining various seis-
mic inputs and using the highest allowable values for design objectives. 
Applying this technique is tedious and requires significant computing 
costs. Creating a more efficient technique for identifying the inputs most 
susceptible to a curved bridge design is very challenging. It is important 
to determine the seismic input parameters that are most susceptible to 
damage and the corresponding main seismic interactions for curved 
bridges. The investigation focused on the dynamic reactions of curved 
bridges by the utilization of finite element analysis and parametric studies. 
A framework for seismic design of a curved bridge was developed based 
on a thorough investigation by providing a new simplified procedure and 
an alternative reliable idealization technique for dynamic and earthquake 
response analysis of curved box-girder type bridge decks. 

 
Scope of Study 
This study deals with the dynamic analysis of curved box-girder 

bridges subjected to earthquake base excitation, which is characterized 
by two orthogonal components, each of which is perpendicular to the 
longitudinal axis, but one is assumed to be in the vertical Y-direction and 
the other in the horizontal transverse X-direction. The 20 February 1990 
modified smooth pseudo-acceleration design spectrum of AL-Hindya 
Earthquake characterizes each base excitation component. Due to the 
lack of acceleration records in the vertical Y-direction, the same response 
spectrum that is used in the analysis of bridge decks is acted upon by 
lateral base excitation, the same spectrum is assumed for the vertical 
earthquake analysis or using El-Centro components (scaled down). It is 
also assumed that the motion of all supports of the bridge has phase 
excitation, that is, all supports are acted upon by the same base excita-
tions simultaneously. Since the box-girder bridges considered in this 
study are curved in plan, the lack of symmetry results in a coupled re-
sponse. Therefore, any base excitation component produces a combined 
response of bending and torsion, even under lateral excitation. 

 
Problem Statement  
The increasing demand for reducing traffic congestion has led to the 

construction of additional highway bridges, particularly curved bridges. 
There has been much study of the structural performance of curved 
bridges since they were first designed and built. The structural intricacy of 
curved bridges causes them to react dynamically differently than straight 
bridges. Between the 1970-s and 1990-s, many powerful earthquakes 
resulted in extensive destruction and economic losses for curved bridges 
in numerous nations globally. Subsequently, various countries have  
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intensified their endeavors in the realm of curved bridge seismic analysis 
(Tao and Guan, 2023) [1]. Curved bridges have distinct dynamic reac-
tions, particularly in the case of small-curvature bridges, as compared to 
linear bridges and exhibit a mix of moments and torsion when subjected 
to both vehicular loads and horizontal seismic forces. When examining 
the curved bridge's reaction in both the horizontal and vertical orienta-
tions, it is difficult to separate the moment-torsion combination. Develop-
ing a reasonable theoretical dynamic analysis of a curved bridge is 
a challenging task due to the curvature and torsional vibration complexity. 
Because of the significant actions that linear bridges show in these X-Y 
directions, earthquake input tests that are both horizontal and vertical are 
generally carried out. Curved bridges are not as resistant to seismic dam-
age as regular bridges, mostly because of their irregular mass distribution 
and irregular structure. Earlier studies have established that the spatial 
variation of ground motion has a detrimental impact on curved bridges (Ka-
han et al., 1996) [2]. Several curved bridges have experienced substantial 
destruction during earthquakes, but none of the existing seismic specifica-
tions – like the 2008 Highway Bridge Seismic Design Specifications [17], 
the Caltrans Seismic Design Standard (Caltrans 2025) [18], and the Ameri-
can AASHTO Seismic Design Guide (AASHTO 2023) [19] – have made 
recommendations or used techniques to avoid these issues. This is at-
tributed to a lack of understanding of the dynamic actions of curved 
bridges during earthquake occurrences. (Wang et al., 2010) [20].  

The objective of the present research is to analyze the longitudinal 
and transverse earthquake motion of the bridge and to determine the 
design forces and moments at the supports bases by the Finite Element 
Method (FEM) and the Panel Element Method (PEM). Then a compara-
tive study of the design forces and moments found from these two meth-
ods has been made. It is expected that the findings of this study will lead 
to a better understanding of the behavior of bridges under seismic load-
ing. For simplicity of the analysis, linear material behavior is assumed 
in this study. 

 
Idealization of Curved Box Girders Using Panel Element Method 
A curved box-girder bridge deck of a square or rectangular and trapezoi-

dal in cross-section typically consists of planar units or non-planar units inter-
connected to each other to form a three-dimensional structural system. 

An idealization procedure for modeling box-girder type bridge decks 
designated as the Panel Element Method (PEM) is proposed in this work. 
The Finite Element Method (FEM) idealization procedure, as used in this 
study for validation purposes. 

 
The Panel Element Method (PEM) Idealization Method 
This paper presents the Panel Element Method (PEM), an idealiza-

tion approach for panel elements (PE). Because the fundamental compo-

nent is derived via altering an element utilized in an existing comparable 
frame technique, this process might be categorized as an analogous 
frame approach. 

The derivation and modification of the Panel Element Method (PEM) 
take into consideration the following assumptions that are found to be 
necessary for the formulation of the problem. 

1. The bridge is assumed to be an assemblage of a finite number of 
flat plates or wall panels. 

2. Each wall or slab panel is modeled by the conventional space 
frame element. 

3. The analysis takes into account the flexural and shear defor-
mations of each individual panel element (PE) in the plane. 

4. Every panel element's (PE) out-of-plane flexural and shear de-
formations are also taken into account. 

5. Diaphragms are regarded as eternally unyielding inside their own 
planes and flexible when positioned outside of those planes. 

6. A partially rigid interface is assumed between panel elements 
and diaphragm in both X-Y directions, that is; relative rotational, is al-
lowed between the panel element and the diaphragm only in the plane of 
panels with no distortion of the cross-section. 

 
Finite Element Idealization Method 
The present work employs the finite element idealization process to 

verify the efficacy of the suggested Panel Element Method (PEM) and to 
facilitate comparisons. The finite element idealization approach is em-
ployed for the analysis utilizing the ANSYS12 program and the 
CivilFEM12 software for ANSYS12. 

A box-girder bridge deck normally consists of top and bottom slabs, 
vertical webs, and transverse members (rigid diaphragms). All these parts 
are modeled by an assemblage of the general four nodes flat shell ele-
ment as shown in Figure 2. 

Transverse members, also known as rigid diaphragms, are assumed 
to be rigid in one plane and flexible in another. This prevents the in-plane 
degrees of freedom (d. o. f.) of the transverse member's nodes from be-
ing slavishly controlled by a master set of in-plane d. o. f. defined at the 
mass center of the box-girder bridge deck cross-section. However, all 
degrees of freedom which are not in-plane of diaphragms are not con-
strained to this transformation. 

For the numerical examples of earthquake response analysis that 
were considered, a specific mesh size is chosen to represent the building 
at the outset, and then the mesh is fine-tuned until two consecutive solu-
tions achieve a maximum difference of less than 2 %. This process guar-
antees convergence and accurate results. 

 

 
 

a) axial stress; b) bending stress; c) total in plane stress; d) shear stress; e) twisting stress; f) total shear stress; g) stress conventions for thin plane 
shell element (Iraq Specification, 1978) [21] 

Figure 2 – Three-dimensional plane shell element 
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Dynamic Analysis of Curved Box-Girder Bridges Subjected to 
Earthquake 

In the dynamic analysis, the main techniques currently used. 
 
Response Spectrum Techniques 
This approach is founded on the mode superposition methodology. 

The general procedure is to compute the response of each of the struc-
ture's individual modes and then to combine these responses to obtain  
the overall response. Only a few modes can be included in computing 
any particular response of the system. The specific modes, which must 
be considered, depend upon the properties of the structures and the 
particular quantity, which is being computed, that is, the modal mass 
participation factors in each mode. 

 
Direct Integration Techniques 
The direct integration of the equations of motion is derived through 

a systematic and sequential process. This approach is applicable to any 
seismic motion on a structure, wherein moment and force diagrams may 
be obtained at specified intervals throughout the applied motion for both 
linear elastic and nonlinear elastic material behavior. This method is the 
more nearly complete dynamic analysis technique so far devised and is 
unfortunately correspondingly expensive to carry out. 

 
Normal Mode Technique 
The normal mode technique is a more limited approach than direct 

integration, as it depends on an artificial combining of the forces and 
displacements associated with a chosen number of them using modal 
superposition. 

 
Equation of Earthquake Motion 
In a typical dynamic problem, the motion of a system excited by an 

external dynamic load, and the complete set of forces acting on the sys-
tem in addition to the external forces are inertia, damping and elastic 
forces which resist the motion and are proportional to the accelerations, 
velocities and displacements of the system, respectively. Thus, the equa-
tion of dynamic equilibrium of all forces acting on a multi-degree of free-
dom system at any time (t) can be written as follows 

               M U + C U + K U = - M R Ug     . (1) 

In which [M], [C] and [K] denote, respectively, the mass, damping 
and stiffness matrices of the bridge deck, corresponding to the structure 
degrees of freedom {U}; the variable {R} represents an earthquake effect 
vector that is composed of both positive and negative values. Positive 
values indicate the degree of freedom in the direction of the base excita-
tion component, while negative values indicate other directions. The vi-
bration mode of the structure may be obtained by transforming Equation 
(1) into the normal coordinates, that is 

 2Y 2 Y + Y = U
M

nr

n n n n n gr

n

t     ,     (2) 

where  .  . T
n n nM M    is the generalized mass at mode (n); 

 .  . T
nr n nl M R   is the modal earthquake excitation factor in the 

r-direction (r = X, Y). 

And  gr Ü t : The time varying base acceleration component in the 

r-direction. The solution of the equation (2) may be written as 

   Y =
M

n

n n

n n

t V t


,  (3) 

where, Vn(t) the earthquake-response integral, defined as 

 
0

( ) U ( ) exp ( ) Sin ( )

t

n g n nV t t t d            .   (4) 

If the response spectrum of the ground motion is available, the max-
imum response of the system at each node can be obtained from it, de-
pending upon the natural time-period and the damping ratio of the struc-
ture. The response could be spectral acceleration, velocity, or displace-
ment, for which 

max

1
( , ) ( , )aV S    


,  (5) 

where T: Natural period, and Sa: the spectral acceleration or more proper-
ly, the spectral Pseudo-acceleration because it is not exactly the peak 
acceleration value in general, denoting the maximum acceleration of the 
structure relative to the ground. 

Then, substituting equation (5) into equation (3) gives 

,max 2
( , )n

n a

n n

S   
 




.     (6) 

The calculated displacements (Un) may be determined by multiplying 
the mode shape (Φn) with the generalized coordinate amplitude (Yn). 
Therefore, the total displacements can be expressed as follows 

 
2

( , )
ranr

nr n

n n

S
U


   






.   (7) 

The elastic forces (Fs) corresponding to the relative displacements 
may be derived by directly multiplying the relative displacements by the 
stiffness matrix, such that 

     sF   K . U   K . Φ . Yt t t  .  (8) 

Expressing these forces in terms of the corresponding inertia forces 
created in the undamped vibration is a more convenient approach 
(Clough and Penzien, 1993) [22] such that 

         2 ( , )
nr r

nr

S n nr n a

n

F U S          


  .  (9) 

 
Structural Response 
It should be pointed out that, in practice, the superposition of the 

mode responses is usually done in one of three ways (Dilger et al., 1988) 
[23]. The most conservative approach that yields an upper limit is to nu-
merically add the response of the modes. This approach yields reasona-
ble results for cases where the contribution of the fundamental mode 
predominates. For many problems this is usually true. 

A less conservative approach is to take the sum of the fundamental 
mode response plus the square root of the sum of the squares of the 
higher modes. This will yield more reasonable results for cases where the 
contributions of the higher modes are appreciable. 

A third approach is to obtain a total maximum response by taking the 
root mean square, that is, the square root of the sum of the squares of 
the maximum responses. The third approach is considered in the present 
study; thus, the maximum forces are approximated by 

max 1 2

2 2 2

max max max( ) ( ) ( )
nS S S SF F F F    ,  (10) 

 
where (FS1max, FS2max, …, FSnmax) are calculated from equation (9). 

The resulting force vector corresponds to the free degrees of free-
dom (d. o. f). The reaction at support is obtained by the static approach, 
thus 

     
maxSe F   ,    (11) 

where [K] denotes the stiffness matrix of the overall structure after applying 
boundary conditions and {e}, denotes the displacement vector produced by 
the static analysis of bridge deck subjected to the maximum force vector 
{FSmax}, which are obtained from the response spectrum analysis. Back 
substitution is applied to evaluate the reactions at supports. 

 
Materials and methods 
This study investigates the seismic response of curved box-girder 

bridge decks using a newly proposed Panel Element Method (PEM), 
validated against the conventional Finite Element Method (FEM). 
The research methodology involved numerical modeling and simulation of 
various curved box-girder bridge configurations. 

 
Computer Programs by MATLAB and ANSYS Software 
A computer program was written for the dynamic analysis of the box-

girder bridge decks by using the proposed Panel Element (PE) method. 
Dynamic analysis which has been adopted consists of free and forced 
vibration (earthquake response analysis). 
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The program group of "FSPE-DYNAMIC" is coded in MATLAB lan-
guage by using a PC-computer. This program is used to analyze the 
curved box-girder bridge decks for any support condition and under any 
live load type. 

Material properties were defined by an Elastic Modulus of 23,5 x 10⁶ kN/m², 
a Weight Density of 24,517 kN/m³, and a Poisson's Ratio of 0,20. 
The important material properties of MATLAB models (Linear, Elastic and 
Isotropic) that are used in the studied cases which are shown in Table 1. 

 
Table 1 – Material properties of MATLAB program 

No. Material Properties Values 
1 Elastic Modulus (E) 23,5 x 106 kN/m2 
2 Weight Density (γ) 24,517 kN/m3 
3 Poisson's Ratio (υ) 0,20 
 
The finite element modeling and analysis conducted in this work 

were carried out using program ANSYS. The calculations conducted in 
this study were executed utilizing ANSYS version 12,0. 

The Shell and Beam elements (ANSYS, 2025) [24] that are used in 
this method of modeling. 

1. Shell 63 (elastic shell). 
2. Beam 4 (3-D Elastic Beam). 

The important material properties of ANSYS models (Linear, Elastic, 
and Isotropic) that are used in the studied cases are shown in Table 2. 

There are primarily four case studies of cross-sectional areas of 
curved box-girder bridges that are modeled in ANSYS for the current 
study as shown below. 

 
Description of Case Studies 
The case studies which are presented in this work include two types 

of curved bridges, two types of box-girder deck bridge, and two types of 

cross-sections of the box-bridge. The types of studied curved bridges are 
as follows: the first type of bridge is a curved bridge with (20 m) span 
lengths, and acute angle of (20° degree) and radius of curvature 
(57,3 m), as shown in Figures 3 c and 5 c, while the second type of 
curved bridge is (30 m) span length, with acute angle of (30° degree) and 
radius of curvature (57,3 m), as shown in Figures 4 c and 6 c. 

The types of studied cellular decks are as follows: the first type is 
a single cell as shown in Figures 3 d and 5 d, while the second is a double 
cell curved deck as shown in Figures 4 d and 6 d. The types of studied 
cross-sections of the box-bridge are as follows: the first type is a rectangular 
cross-section, as shown in Figures 3 a and 5 a, while the second is a trape-
zoidal cross-section curved deck, as shown in Figures 4 a and 6 a. 

Typical layout and cross-section dimensions for each type are shown in 
Figures 3, 4, 5, 6 and the material properties are listed in Tables 1 and 2. 

These decks are the major decks of an existing bridge at Baghdad 
city (Ur-Qaherah bridge). For the purpose of the present analysis, it is 
assumed that each bridge is of a single (simply supported) span of length 
and central angle shown in Figures 3 c and 4 c. It is worth mentioning that 
each deck is curved in the longitudinal direction by a central angle 
(θ = 20° and θ = 30°) and in the vertical direction by the profile described 
in Figures 3 b and 4 b. All bridge decks, which are studied in the following 
numerical case studies, are assumed to be of reinforced concrete, which 
is assumed to be a linear elastic material. The required material proper-
ties in the analysis are shown in Tables 1 and 2.  

 
Table 2 – Material properties of ANSYS models 

No. Material Properties Values 
1 Elastic Modulus (E) 23,5 x 103 N/mm2 
2 Weight Density (γ) 2,500 kg/m3 
3 Poisson's Ratio (υ) 0,20 

 

 
 

Figure 3 – Case Study No. 1. Rectangular single cellular curved box-girder bridge 
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Figure 4 – Case Study No. 2. Rectangular double cellular curved box-girder bridge 
 

 
 

Figure 5 – Case Study No. 3. Trapezoidal single cellular curved box-girder bridge 
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Figure 6 – Case Study No. 4. Trapezoidal double cellular curved box-girder bridge 
 

Numerical Case Studies 
The bridge decks were analyzed for their earthquake response when 

acted upon by a lateral base excitation (orthogonal to the longitudinal 
tangential axis of the bridge at its mid-span) and a vertical base excita-
tion. All these bridges are analyzed using both the proposed Panel Ele-
ment (PE) approach and the results are compared to those obtained by 
the Finite Element (FE) procedure using the ready software ANSYS. 
For more details see (Al_Temimi F., 2014) [25].  

The resulting moments and shear forces of each case study are giv-
en in two ways and as follows: 

1) absolute response that is, the maximum moment and maximum 
shear force; 

2) normalized response, that is, the resulting moment and shear 
forces are normalized to: 

a) total mass of the bridge (m*); 
b) the product of (m*) times the span length of the bridge (L). 
 
Research Results 
Some parametric studies are carried out to provide a better idea 

about the behavior of curved box girder bridges including four main fac-

tors of: number of cells, web to flange thickness ratios, number of dia-
phragms and live load effects, to provide a better idea about the behavior 
of curved box girder bridges. The comparative analysis between PEM 
and FEM demonstrated the validity and efficiency of the proposed meth-
od. The results, summarized across multiple parametric studies, are as 
follows. 

 
Effects of Number of Cells Variation 
Two types of cell bridges (single and double) are considered for veri-

fication purposes. A cantilever deck of (20 m) span length, (2,3 m) depth 
and (3 m) width of each cell and element thicknesses of (0,3 m) is studied 
for their earthquake response. 

The absolute and normalized moments, shear forces and deflections 
of a cantilever deck are given in Tables 3 and 4 for base excitation in (X 
and Y-directions), respectively. 

Analysis showed that a maximum difference of less than (12 %) in 
deflection, base shears and bending moments is encountered between 
the proposed Panel Element Method (PEM) of analysis and the finite 
element (FE) procedure of ANSYS software irrespective of the direction 
of earthquake base excitation. 

 
Table 3 – Maximum response of a cantilever bridge deck of single and double cell (base excitation in lateral X-direction) 

No. of 
Cells 

Analysis 
Method 

Max. Bending Moment Max. Shear Force Max. Deflection 
(mm) Abs. (kN.m) Nor. to m* (m) Nor. to m* x L Abs. (kN) Nor. to m* 

1 
FEM 614,742 0,244 0,012 75,672 0,030 1,273 
PEM 691,992 0,275 0,014 81,152 0,032 1,312 

2 
FEM 705,600 0,510 0,026 92,369 0,067 1,639 
PEM 750,600 0,543 0,027 95,969 0,069 1,837 

 
Table 4 – Maximum response of a cantilever bridge deck of single and double cell (base excitation in vertical Y-direction) 

No. of 
Cells 

Analysis 
Method 

Max. Bending Moment Max. Shear Force Max. Deflection 
(mm) Abs. (kN.m) Nor. to m* (m) Nor. to m* x L Abs. (kN) Nor. to m* 

1 
FEM 956,133 0,380 0,019 315,773 0,126 4,077 
PEM 1023,383 0,407 0,020 325,925 0,130 4,369 

2 
FEM 1016,064 0,735 0,037 404,571 0,293 5,535 
PEM 1056,912 0,764 0,038 407,235 0,295 5,700 
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Effects of Web to Flange Thicknesses Ratio 
The bridge decks are studied here for their earthquake response 

characteristics. A single cell deck is considered with a depth of (2,3 m) 
and a width of (3,0 m), then a double cell deck is considered with a depth 
of (2,3 m) but a width of 6,0 m (3,0 m for each cell). The bridges under 
consideration are of (20 m) single span with partially and fully restrained 
supports, the radius of curvature of the bridge span is (57,3 m). 
The thickness ratios varied from (0,5 to 2,0). To demonstrate the range of 
applicability of the proposed idealization procedure of the Panel Element 
Method (PEM) to different ranges of (web thickness: Slab thickness) ratio. 

The single cell bridge deck fully restrained at supports which is discussed 
in chapter five is used here for earthquake response in two directions (X 
and Y directions) transverse to the longitudinal axis of the deck (Z-axis).  

The results are presented in Figures 7 and 8 for the cases of a single 
cell and double cell bridge deck. Results reveal that the proposed ideali-
zation procedure of the Panel Element Method (PEM) works well in eval-
uating the response of bridge decks subjected to earthquake base excita-
tion as compared with the Finite Element Method (FEM) with errors not 
more than (10 %) in the deflection and no more than (17 %) in moments 
and shear forces when the (tw/ts) thickness ratio reaches (2). 

 
Figure 7 – Maximum response variation with (web thickness: slab thickness) ratio for single curved bridge deck fully restrained at supports (base 

excitation in lateral X-direction) 
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Figure 8 – Maximum response variation with (web thickness: slab thickness) ratio for single curved bridge deck fully restrained at supports (base 

excitation in vertical Y-direction) 
 
Effects of Number of Diaphragms 
Next is a parametric study on the effect of number of diaphragms along 

the constant span length on the earthquake response behavior of curved 
bridges to demonstrate the range of applicability of the proposed panel 
element (PE) idealization scheme for two cases of earthquake base excita-
tion, namely, in a lateral X-direction normal to mid-span tangent and in the 
vertical Y-direction. The numbers of panels are changed from (2 to 10). 
In this case, the number of diaphragms represents the number of panels 
where each panel represents a segment between two diaphragms.  

Maximum moments and deflections at mid-span and maximum shear 
forces at supports as a response of the bridge deck when acted upon by 

base excitation are shown in Tables 5, 6, 7 and 8, for both partially and 
fully restrained support conditions for earthquake base excitation in X and 
Y-directions, respectively. 

It can be seen clearly from the results that variation of number of 
panels results in significant change in the value of the deflection for both 
X and Y directions and boundary condition types, with errors not more 
than (12 %) in the deflection and no more than (18 %) in moments and 
shear forces when the number of diaphragms reaches (10). It is also 
concluded that the proposed idealization procedure of the Panel Element 
Method (PEM) is valid for all the range of numbers of diaphragms consid-
ered in the study. 
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Table 5 – Maximum response variation with (number of diaphragms: span) ratio for single cell bridgdeck partially restrained at supports (base exci-
tation in lateral X-direction) 

No. of 
Cells 

Analysis 
Method 

Max. Bending Moment Max. Shear Force Max. Deflection 
(mm) Abs. (kN.m) Nor. to m* (m) Nor. to m* x L Abs. (kN) Nor. to m* 

2 
FEM 3494,16 2,527 0,126 1157,76 0,837 0,931 

PEM 4109,6 2,972 0,149 1343,68 0,972 1,007 

4 
FEM 3229,2 2,335 0,117 1285,74 0,930 0,898 

PEM 3799,2 2,748 0,137 1507,04 1,090 0,957 

6 
FEM 3600 2,603 0,130 1494,36 1,081 0,980 

PEM 4022,4 2,909 0,145 1725,408 1,248 1,040 

10 
FEM 3895,2 2,817 0,141 1598,94 1,156 1,053 

PEM 4233,96 3,062 0,153 1778,544 1,286 1,092 

 
Table 6 – Maximum response variation with (number of diaphragms: span) ratio for single cell bridge deck fully restrained at supports (base excita-

tion in lateral X-direction) 

No. of 
Cells 

Analysis 
Method 

Max. Bending Moment Max. Shear Force Max. Deflection 
(mm) Abs. (kN.m) Nor. to m* (m) Nor. to m* x L Abs. (kN) Nor. to m* 

2 
FEM 2088,6 1,510 0,076 649,2 0,469 0,515 

PEM 2459,4 1,779 0,089 753,2 0,545 0,564 

4 
FEM 2082,24 1,506 0,075 689,04 0,498 0,558 

PEM 2401,92 1,737 0,087 813,16 0,588 0,591 

6 
FEM 2314,08 1,674 0,084 741,96 0,537 0,607 

PEM 2600,06 1,880 0,094 877,8 0,635 0,627 

10 
FEM 2498,4 1,807 0,090 787,8 0,570 0,650 

PEM 2720,4 1,967 0,098 918 0,664 0,653 

 
Table 7 – Maximum response variation with (number of diaphragms: span) ratio for single cell bridge deck partially restrained at supports (base ex-

citation in vertical Y-direction) 

No. of 
Cells 

Analysis 
Method 

Max. Bending Moment Max. Shear Force Max. Deflection 
(mm) Abs. (kN.m) Nor. to m* (m) Nor. to m* x L Abs. (kN) Nor. to m* 

2 
FEM 3744 2,708 0,135 1379,556 0,998 5,502 

PEM 4425 3,200 0,160 1610,8 1,165 6,194 

4 
FEM 3542,04 2,562 0,128 1499,2 1,084 6,376 

PEM 4094,64 2,961 0,148 1729,232 1,251 6,830 

6 
FEM 4046,4 2,926 0,146 1568,34 1,134 7,029 

PEM 4572,18 3,307 0,165 1819,2 1,316 7,326 

10 
FEM 4432,8 3,206 0,160 1666,8 1,205 7,590 

PEM 4923,72 3,561 0,178 1954,08 1,413 7,755 

 
Table 8 – Maximum response variation with (number of diaphragms: span) ratio for single cell bridge deck fully restrained at supports (base excita-

tion in vertical Y-direction) 

No. of 
Cells 

Analysis 
Method 

Max. Bending Moment Max. Shear Force Max. Deflection 
(mm) Abs. (kN.m) Nor. to m* (m) Nor. to m* x L Abs. (kN) Nor. to m* 

2 
FEM 2665,32 1,928 0,096 982,4 0,710 2,099 

PEM 3126,8 2,261 0,113 1129,56 0,817 2,313 

4 
FEM 2506,36 1,813 0,091 998,16 0,722 2,049 

PEM 2966,04 2,145 0,107 1182,06 0,855 2,247 

6 
FEM 2868,84 2,075 0,104 1055,7 0,763 2,300 

PEM 3243,4 2,346 0,117 1207,08 0,873 2,412 

10 
FEM 3145,68 2,275 0,114 1122 0,811 2,492 

PEM 3487,32 2,522 0,126 1234,8 0,893 2,534 

 
Effect of Live Load 
To explain the effect of live load, simple load cases are considered 

according to the Iraq's Specifications for Bridge Loading (Iraq Specifica-
tion, 1978) [21]. 

1. Lane loading, where loads are distributed uniformly over 
the deck and knife edge load is considered at mid-span to give the 
maximum response. This load condition is designated the fast load 
case (load case I). 

2. Military Loading, two classes of this loading are studied as fol-
lows: 

a) class 100 (Tracked), one tracked at mid-span. This load condi-
tion is designated the second load case (load case II); 

b) class 100 (Wheeled), one wheeled at mid-span. This load condi-
tion is designated the third load case (load case III). 

The uniformly distributed lane load is considered as an additional 
mass added to the mass density of the structures. The other types of live 
loads are considered as lumped masses added to the corresponding 
degrees of freedom in the horizontal transverse (X-direction) and vertical 
(Y-direction). 

All the results, which represent the dynamic response of the bridge 
deck subjected to earthquake base excitation in X and Y-directions and 
for both partially and fully restrained boundary conditions are given in 
Tables 9, 10, 11 and 12. 

It can be seen from the above-mentioned tables that a good agree-
ment with response predicted by the finite element is demonstrated out of 
these numerical case studies, with errors not more than (10 %) in the 
deflection and no more than (16 %) in moments and shear forces. 

Also, the tables give more evidence of the validity of the proposed 
idealization procedure of the Panel Element Method (PEM). 
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Table 9 – Maximum response for different live load cases on a single cell bridge deck partially restrained at supports (base excitation in lateral  
X-direction) 

Load Case 
No. 

Analysis 
Method 

Max. Bending Moment Max. Shear Force Max. Deflection 
(mm) Abs. (kN.m) Nor. to m* (m) Nor. to m* x L Abs. (kN) Nor. to m* 

I 
FEM 5210,4 3,768 0,188 958,2 0,693 1,63 
PEM 5731,8 4,145 0,207 1030,224 0,745 1,7 

II 
FEM 5688,12 4,114 0,206 1068,12 0,772 1,729 
PEM 6022,08 4,355 0,218 1136,16 0,822 1,766 

III 
FEM 6368,72 4,606 0,230 1207,44 0,873 1,898 
PEM 6915,16 5,001 0,250 1232,04 0,891 2,019 

 
Table 10 – Maximum response for different live load cases on a single cell bridge deck fully restrained at supports (base excitation in lateral  

X-direction) 

Load Case 
No. 

Analysis 
Method 

Max. Bending Moment Max. Shear Force Max. Deflection 
(mm) Abs. (kN.m) Nor. to m* (m) Nor. to m* x L Abs. (kN) Nor. to m* 

I 
FEM 2685,6 1,942 0,097 703,44 0,509 0,749 
PEM 3027,96 2,190 0,109 764,604 0,553 0,825 

II 
FEM 3192,48 2,309 0,115 884,76 0,640 1,013 
PEM 3566,88 2,580 0,129 924,84 0,669 1,095 

III 
FEM 3877,32 2,804 0,140 1006,56 0,728 1,135 
PEM 4045,68 2,926 0,146 1037,64 0,750 1,234 

 
Table 11 – Maximum response for different live load cases on a single cell bridge deck partially restrained at supports (base excitation in vertical  

Y-direction) 

Load Case 
No. 

Analysis 
Method 

Max. Bending Moment Max. Shear Force Max. Deflection 
(mm) Abs. (kN.m) Nor. to m* (m) Nor. to m* x L Abs. (kN) Nor. to m* 

I 
FEM 4883,76 3,532 0,177 1486,44 1,075 7,85 
PEM 5149,76 3,724 0,186 1617,6 1,170 8,642 

II 
FEM 4907,16 3,549 0,177 1633,68 1,181 8,642 
PEM 5287,24 3,824 0,191 1769,88 1,280 9,137 

III 
FEM 5026,13 3,635 0,182 1862,64 1,347 9,863 
PEM 5513,64 3,987 0,199 1920,24 1,389 10,655 

 
Table 12 – Maximum response for different live load cases on a single cell bridge deck fully restrained at supports (base excitation in vertical  

Y-direction) 

Load Case 
No. 

Analysis 
Method 

Max. Bending Moment Max. Shear Force Max. Deflection 
(mm) Abs. (kN.m) Nor. to m* (m) Nor. to m* x L Abs. (kN) Nor. to m* 

I 
FEM 4620 3,341 0,167 1342,08 0,971 6,684 

PEM 5316,3 3,845 0,192 1383,48 1,001 7,029 

II 
FEM 4666,8 3,375 0,169 1503,6 1,087 6,798 

PEM 5432,4 3,929 0,196 1542 1,115 7,117 

III 
FEM 4965,6 3,591 0,180 1656,6 1,198 7,029 

PEM 5744,76 4,155 0,208 1670,4 1,208 7,458 

 
Conclusions  
In order to assess the efficiency and accuracy of the proposed ideali-

zation procedure designated the Panel Element Method (PEM) for earth-
quake response analysis of curved box-girder deck bridge structures, 
a number of examples of case studies are analyzed. 

Different configurations of curved box-girder bridge decks are con-
sidered to verify the proposed Panel Element Method (PEM) against the 
Finite Element Method (FEM) for both free and forced vibrations. Accord-
ing to the case studies considered in the present research, the major 
conclusions are drawn. 

1. The Panel Element Method (PEM) of idealizing curved box-girder 
type bridge decks is verified for the dynamic analysis of earthquake re-
sponse of almost all-practical deck configurations, which are considered. 

2. At the same time, a varied reduction in the number of elements 
and hence, the degrees of freedom (d. o. f) is gained when using the 
proposed idealization procedure of panel element (PEM) to model the 
behavior of the bridge under consideration as compared to the traditional 
finite element (FE) procedure. 

3. Moreover, since the number of degrees of freedom needed by 
the proposed element is limited, the number of equations and iterations 
are largely reduced and hence less error is encountered.  

4. The Panel Element Method (PEM) has proved to be valid in es-
timating the earthquake response for both cases of single and double cell 
bridge decks. 

5. For all the ranges of the aspect ratios; the results obtained by the 
Panel Element Method (PEM) are acceptable, with an error of less than 
(12 %) in deflection and less than (18 %) in moments and shear forces for 
the cases of very large aspect ratios. It can be seen that the proposed 
Panel Element Method (PEM) predicts good estimates of cases of small 
aspect ratios. The normalized value shows good compatibility in response 
especially in the values of moments when normalized to the product of 
total mass and the span of the decks. 

6. Variation of the number of diaphragms for a constant span length 
of a bridge deck results in almost no change in the deflection. The errors 
encountered in estimating the deflection of bridge decks are inversely pro-
portional to the number of panels. The number of diaphragms has proved to 
be of insignificant influence on the moment and shear force responses of 
curved bridge decks when acted upon by earthquake base excitations. 
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