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Abstract

The accelerated digitalization of the construction industry emphasizes the need for developing accurate and efficient methods for assessing
the technical condition of buildings and structures. Despite the growing adoption of Building Information Modeling (BIM) and Digital Twin (DT)
technologies, their potential for diagnostic purposes and forecasting the residual service life of structures remains underutilized. This paper presents
the results of a systematic literature review aimed at identifying and analyzing specific approaches at the intersection of BIM, DT, the Internet of Things
(loT), and Artificial Intelligence (Al) methods, specifically focused on condition assessment. The SLR procedure, covering 100 relevant publications,
enabled structuring the research field along three aspects: types of monitoring data and sensors used, methods for integrating diagnostic data
with digital models, and analysis algorithms for damage detection and degradation forecasting. The results indicate a transition from passive digital
models to active diagnostic systems operating in near real-time. However, a key barrier remains the fragmentation of solutions: data on physical
condition often exist in isolation from the semantic context of the BIM model, while analysis algorithms are not adapted to handle spatially distributed
and multi-parametric information streams. Based on the conducted analysis, the article proposes a conceptual framework for building comprehensive
diagnostic DT systems. This framework includes the semantic enrichment of models with condition attributes, unified protocols for streaming sensor
data, and hybrid analytical algorithms combining physical degradation models with machine learning. This research contributes to the systematization
of knowledge in the field of IT-enabled structural health monitoring and outlines directions for further applied development.

Keywords: building information modeling (BIM), digital twin, structural health monitoring (SHM), internet of things (loT), artificial intelligence (Al),
systematic review.

WHHOBALIMOHHBIE NOAX0oabl U MPAKTUKA NHOOPMALIMOHHbIX TEXHOJ'IO[I/IVI B OLIEHKE TEXHUYECKOIO
COCTOAHUA CTPOUTEJIbHBIX KOHCTPYKLIUK

v WyTwhr, H. B. YepHouBaH

Pedepar

YckopeHve LudpoBM3aLmMn CTPOMTENBHOM OTPACHM akTyanuaupyeT 3adady paspaboTku TOUHBIX U SGEKTUBHBLIX METOAOB OLEHKM TEXHNYECKOrO
COCTOSIHWSI 3[@HWIA U COOPYXEHWA. HecMoTps Ha pacTyllee BHELpEHWe TexXHoMoruin WHopmaunoHHoro mogenuposaHus (BIM) u umdposbix
neoitHukos (Digital Twin, DT), ux noTeHuman Ans Lenei AMarHoCTUKM W NPOrHO3UPOBaHNS! OCTaTOMHOTO PECYPCa KOHCTPYKLMIA PacKpbIT He MONHOCTLH.
B panHOW cTaTbe npeAcTaBneHbl pesynbTathl cUCTEMaTWyeckoro 0630pa nuTepaTypbl, BbIMOMHEHHOTO C LEMbl0 BbISBMEHWS W aHanusa
cneumudnyecknx nogxoaos Ha ctbike BIM, DT, uHTepHeTa Bewen (I0T) n METOAOB MCKYCCTBEHHOTO WHTEnnekta (AW), opueHTMpoBaHHbIX MEHHO
Ha OLEHKY TexHuyeckoro coctosiHus. Mpouenypa SLR, oxBaTuLuas 100 peneBaHTHbIX NybnmMkaLmit, N03BONMNa CTPYKTYpUPOBaTL UCCELOBATENBCKOE
rnorne no TPem acrekTam: TWMbl UCMOMb3YEMbIX [aHHbIX W CEHCOPOB ANsl MOHUTOPWHIA, METOAbI MHTETPaLMK LaHHbIX AUArHOCTUKA C LUPOBbIMU
MOZENsMW, anropuTMbl aHanu3a A71s BbISIBIEHUS MOBPEXAEHMIA U MPOTrHO3MPOBaHUS W3HOCA. Pe3ynbTaThbl YKasbiBAKT HA MEPexod OT MAacCUBHbIX
UNpOoBbLIX MOAENEN K aKTUBHBIM JUArHOCTUYECKUM CUCTEMAM, (DYHKLMOHMPYIOWMM B pexiuMe, Bnn3kom k peanbHOMy Bpemenu. OfHaKo KryeBbIM
Gapbepom ocTaeTcs (hparMeHTapHOCTb PELLEHNIA: JaHHbIe O (IU3MHECKOM COCTOSIHUM 3a4acTyI0 CYLLECTBYHOT M30MMPOBAHHO OT CMbICIIOBOTO KOHTEKCTA
BIM-mozenu, a anropuTmbl aHanu3a He afanTupoBaHbl K paboTe C MPOCTPAHCTBEHHO-PAcMpefeneHHbIMU U MHOroNapamMeTpUYecKUMI NoToKamu
nHopmaumm. Ha ocHoBe MpOBEAEHHOrO aHanuaa B CTaTbe MPEeLIaraeTcs KOHLENTyarnbHas paMka Ans MOCTPOEHWS KOMMMEKCHbIX AMarHOCTUYECKMX
DT-cuctem, Bkmtovarowas cemaHTuyeckoe oboralieHue mopenei atpubytamu COCTOSIHUSA, YHUDMLMPOBAHHbIE MPOTOKOMbI MOTOKOBOW nepefauu
[aHHbIX C JAaTYMKOB W rMBpUaHbIE aHaNUTUYECKUe anropuTMbl, COYETaKoWME (U3NYECKME MOLENM Lerpafauuu ¢ MalwuHHbIM 0ByyeHnem. [aHHoe
1ccrefoBaH1e BHOCUT BKNaA B CUCTEMATM3ALMIO 3HaHWIA B obnactu UT-06ecneyeHns MOHUTOPUHTA COCTOSIHUS KOHCTPYKUWA U 3aAaeT HanpaBneHus
ANs AanbHenWwnX npuknagHbix paspaboTok.

KntoueBble crnoBa: nHhopmaLmoHHoe Moaenvposanue 3nanuid (BIM), undpoBoit 4BOAHNK, MOHUTOPUHI TEXHUYECKOrO COCTOSIHUS KOHCTPYKLIANA
(SHM), nHTepHeT Bewei (IoT), nckyccTBeHHbIN uHTennekT (UMW), cuctematudeckuin 063op.

Introduction BIM has established itself as the standard for the digital repre-

The dynamics of the modern construction industry are characterized
not only by the pursuit of optimizing construction processes but also by
increasing demands for safety, operational reliability, and lifecycle man-
agement of existing buildings and structures. In this context, Structural
Health Monitoring (SHM) is evolving beyond periodic instrumental sur-
veys into a task of continuous, data-driven analysis [1]. The «Construc-
tion 4.0» paradigm, integrating 0T, Al, and big data, creates the techno-
logical foundation for this transformation, as discussed in detail in review
works on this topic [2, 3]. However, as researchers note, the technologi-
cal arsenal itself does not guarantee results; its targeted orientation to-
wards solving specific engineering problems, such as damage identifica-
tion and residual life prediction, is critically important.

sentation of the physical and functional characteristics of an asset.
However, the traditional BIM model, while being a rich source of stat-
ic information on geometry, materials, and components, is not inher-
ently designed to work with dynamic data concerning the actual be-
havior and condition of structures under load and over time [4].
This is precisely the limitation that the Digital Twin (DT) concept aims
to overcome, proposing the creation of a connected, synchronized,
and continuously updated digital copy of a physical asset [5]. Thus,
the DT presents itself as an ideal platform for SHM, potentially capa-
ble of enabling a shift from reactive to predictive maintenance, which
is particularly relevant in light of global trends in sustainable devel-
opment and lean asset management [1].
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Despite the obvious synergistic potential, research at the intersection
of BIM, DT, and SHM remains fragmented. A significant volume of work is
devoted to the general principles of DT in construction, their architecture,
or specific implementation cases [6, 7]. At the same time, questions re-
garding what specific dataon structural condition is most informa-
tive, how it should be semantically linked to BIM model elements, and by
which algorithms diagnostically significant conclusions can be extracted
from this data remain insufficiently studied. A clear gap exists in the sys-
tematization of technological pipelines that transform the abstract DT
concept into a working tool for a diagnostics engineer. This problem is
partially addressed in works dedicated to interoperability and standardiza-
tion, but the focus in them is often shifted towards general data rather
than highly specialized condition parameters [8, 9].

The aim of this article is to structure and critically analyze exist-
ing research and practical approaches to using information technolo-
gies (BIM, DT, IoT, Al) for the tasks of assessing the technical condi-
tion of building structures. To achieve this aim, a systematic literature
review (SLR) was conducted to answer the following questions:
1) What are the dominant data types and sources in modern IT sys-
tems for SHM? 2) Which architectural and technological solutions are
used to integrate monitoring data streams with digital models?
3) Which analytical methods are applied to interpret data and assess
condition? The results of this analysis will reveal prevailing trends,
identify bottlenecks, and define promising directions for creating ho-
listic, interoperable, and effective diagnostic systems.

Research Methodology

To achieve the stated aim, the Systematic Literature Review (SLR)
method was applied, following established protocols that have proven
effective in technical sciences [10]. The process was divided into clear
stages: planning, search, selection, analysis, and synthesis. This ap-
proach minimizes subjectivity and ensures the reproducibility of results.

Planning. The three points outlined above were formulated as Re-
search Questions (RQs). They are aimed at identifying technological
components and their interrelationships in the SHM context, shifting the
focus from general rhetoric about digitalization to specific technical im-
plementations.

Search. The search for relevant publications was conducted in the
Scopus, Web of Science, and IEEE Xplore databases, which have high
citation indices in technical and computer sciences. The search period
was limited to the last decade (2014-2024) to cover the period of active
development of DT and loT. However, to understand the evolution of
some basic concepts, earlier fundamental works were also consulted.
A combination of key terms, grouped into thematic clusters, was used:

1) objective: «structural health monitoring» OR «condition assess-
ment» OR «damage detection» OR «structural integrity»;

2) technology: «digital twiny OR «BIM» OR «Building Information
Modeling;

3) tools: («loT» OR «sensor» OR «artificial intelligence» OR «ma-
chine learning».

This search strategy allowed covering the interdisciplinary nature of
the topic.

Selection. The initial search yielded 412 results. After automatic and
manual removal of duplicates, 378 publications remained. At the prelimi-
nary screening stage based on titles and abstracts, works not meeting the
inclusion criteria were excluded: articles had to be peer-reviewed, written
in English, and directly describe the application of BIM/DT/IoT/Al for mon-
itoring, diagnosing, or predicting the condition of building structures
(buildings, bridges, tunnels). Works focused solely on energy efficiency
[5, 11], comfort management, or general project management issues
without an emphasis on structural condition were excluded. After this
stage, 152 publications remained in the pool.

Analysis and Synthesis. The full texts of these 152 articles were
examined for compliance. Ultimately, 100 publications that most fully and
substantively answered the research questions were included in the final
selection for in-depth qualitative analysis. Data from the selected articles
were extracted into a structured table by categories: structure type, sen-
sors and data used, method of integration with BIM/DT, applied analytical
algorithms, key findings. Information synthesis was carried out through
thematic analysis and comparison of the identified approaches, which
allowed not just listing technologies but identifying patterns in their appli-
cation and mutual influence.

Results and Analysis

The literature analysis allowed for the identification of three intercon-
nected technological layers in condition assessment systems based on
DT: the data layer, the integration layer, and the analytics layer. Each
layer has its own development logic and set of problems, but their effec-
tiveness is determined precisely by the coherence of interaction.

1. Data Layer. Sources and Types of Condition Infor-
mation. The dominant data source is a network of heterogeneous loT
sensors, installed either permanently or used mobile. Several categories
can be distinguished, each covered in a number of studies.

e Geometric Data. Laser scanning (LiDAR) and photogrammetry
provide high-precision point clouds for detecting deformations, deflec-
tions, and cracks [12]. Their primary value lies in creating an up-to-date
geometric «shell» for the DT, which is the first step towards detecting
macro-damage.

o Dynamic and Vibration Data. Accelerometers, gyroscopes, and
strain gauges record the structural response to static and dynamic loads
(wind, traffic, operational impacts). Analysis of frequency characteristics
and mode shapes is a classical method for identifying changes in stiff-
ness and the emergence of damage, as confirmed by both fundamental
and applied works [13, 14].

e Physico-Chemical Data. Corrosion, humidity, temperature
sensors, and acoustic emission sensors (for crack detection) provide
information on material degradation processes and the environment
[15]. This data often has a local character but is critically important for
assessing progressive damage. A critical problem at this layer, noted
by many authors, is the uncertainty in selecting the optimal sensor
type, quantity, and placement for specific structure types, as well
as ensuring the long-term autonomy and calibration of measurement
systems. A dilemma exists between sensor network density and the
economic feasibility of its deployment.

2. Integration Layer. Linking Data with the Digital Model. The in-
tegration problem extends beyond simply «attaching» a sensor reading to
coordinates in the model. It concerns the semantic enrichment of BIM/DT,
i. e., endowing digital objects with the ability to «understand» incoming
condition data. Two main approaches have been identified, which often
compete and sometimes complement each other.

o Extension of Data Standards. Attempts to extend the open
IFC (Industry Foundation Classes) format with classes and attributes
for storing monitoring data, maintenance history, and condition as-
sessments [8]. This is a «heavy» but potentially the most interoperable
path, as it relies on an already existing ecosystem. However, the
standardization process is extremely slow and often lags behind the
pace of technological development.

o Use of Ontologies and Linking Models. Creating sepa-
rate semantic models (e. g., based on the Brick Schema developed
for buildings) that act as an intermediate layer linking raw sensor
data to BIM model concepts [7, 16]. This allows for flexible descrip-
tion of complex relationships (e. g., that a group of vibration sen-
sors belongs to a specific beam, which in turn is part of the load-
bearing frame) but creates the problem of ontology multiplicity.
The main challenge here remains the lack of a unified, widely ac-
cepted standard for describing the «condition» of a structural ele-
ment in a digital representation, which hinders data exchange be-
tween different software platforms and creates barriers to scaling
solutions [9]. Moreover, as shown by the research of Seghezzi et
al. [8], even when technical solutions exist, the key obstacle can
be the absence of clear organizational information management
processes.

3. Analytics Layer. From Data to Diagnostic Insights. This is
where the role of Al and physical modeling is fully realized. The analysis
showed an evolution from simple to complex hybrid methods, with each
stage having its niche application.

o Threshold Methods and Physical Models. The basic level,
where an alarm is triggered when a predefined limit (e. g., strain) is ex-
ceeded. Detailed finite element analysis (FEA) models, embedded in the
DT, allow for simulating structural behavior and comparing it with reality,
performing so-called virtual load testing [16]. These methods are well
interpretable but require precise knowledge of material properties and
boundary conditions.
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e Machine Learning (ML) and Deep Learning (DL). These
methods dominate contemporary research, as clearly seen in the dynam-
ics of publications. Unsupervised learing techniques, such as clustering
or principal component analysis (PCA), are used to detect anomalies in
data streams without prior knowledge of damage, which is convenient for
monitoring complex objects with non-obvious degradation modes [10].
Supervised learning methods, e. g., convolutional neural networks (CNN),
are applied for automatic classification of damage types in images or
vibration spectra, demonstrating impressive accuracy in controlled condi-
tions [6, 18]. Recurrent neural networks (RNN) are effective for analyzing
time series and forecasting future trends (e. g., deformation development
or accumulation of fatigue damage).

o Hybrid (Physics-Informed) Models. The most promising direc-
tion, where physical laws (equations of solid mechanics) are embedded
into neural network architectures or used to generate synthetic data for
their training [14]. This helps overcome the «data hunger» characteristic
of purely data-driven approaches in SHM and improves the explainability
of results, which is a critical requirement for engineering practice. Such
approaches essentially create a digital twin that not only reflects but also
«understands» the physics of the process.

Case Study. A Retrospective View of Shanghai Tower from
an SHM Perspective. Although the Shanghai Tower project [19] is
often cited as a benchmark for BIM application, its potential for
continuous condition monitoring was only partially realized.
The integration of BIM with Building Management Systems (BMS)
was primarily focused on energy and climate. However, viewing this
model as a foundation for a future DT reveals key points for SHM
implementation. For example, elements of the complex facade and
the high-rise structures, subject to significant wind and seismic
loads, are ideal candidates for equipping with a network of fiber
optic strain sensors and accelerometers. Data streams from these
sensors, integrated into the BIM platform via a semantic layer,
could enable real-time tracking of stress levels, identification of
fatigue phenomena, and prediction of the need for targeted inter-
vention, minimizing risks and maintenance costs for the unique
structure. This example illustrates the evolution from BIM as an
archival model to DT as an active diagnostic system. Interestingly,
a similar approach, but for bridge structures, is demonstrated in the
work of Tita et al. [20], indicating the universality of the identified
principles for different types of infrastructure.

Figure 1 — Schematic diagram of the BIM model structure of Shanghai Tower

Conclusion and Future Research Directions

The conducted systematic review confirms that the convergence of
BIM, Digital Twin, loT, and Artificial Intelligence is shaping a new para-
digm in the field of technical condition assessment for building structures.
IT is ceasing to be merely a visualization tool and is becoming the core of
predictive analytics systems. A key conclusion is the recognition that the
value of DT for SHM is determined not by the complexity of 3D graphics,
but by the depth of semantic connections between model elements and
data streams, as well as by the intelligence of the algorithms interpreting
this data. The application of these technologies, as shown in various
studies, covers a wide spectrum of tasks — from virtual design and safety
management [18] to structural health monitoring [14] and even modeling
the spread of hazardous substances in buildings [6].

The analysis revealed several persistent problems hindering wide-
spread industrial adoption. These problems are systemic in nature and
require interdisciplinary efforts.

1. Semantic Gap. The lack of unified ontologies for describing struc-
tural condition and its linkage to monitoring data. Existing works, such as
[8], offer partial solutions, but there is no industry-wide consensus.

2. The «Last Mile» Data Problem. The difficulty of automatic, reli-
able, and cost-effective collection of high-frequency data from distributed
sensor networks over decades of operation. Issues of power supply, data
transmission, and physical durability of sensors in aggressive environ-
ments remain relevant [15].

3. The «Black Box» of Analytics. Insufficient explainability of de-
cisions proposed by complex machine learning models, which is critically
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important for making engineering decisions in the realm of safety.
An engineer must understand the basis on which the system recom-
mends an inspection or structural strengthening.

4. Ecosystem Fragmentation. Incompatibility between proprietary
platforms for BIM, loT, and analytics, leading to the creation of «siloed»
solutions, as rightly mentioned in the context of the construction industry
as a whole [9].

As directions for future research, based on the synthesis of the re-
viewed works, it is proposed to focus efforts on the following areas:

e development and validation of open, industry-focused on-
tologies, focusing specifically on condition attributes, damage, and diag-
nostic metrics, rather than general building descriptions. This work should
be carried out by consortia involving all stakeholders;

o investigation of hybrid analytical architectures that combine
physical fidelity (e. g., reduced-order FEA models) with the adaptability of
machine learning methods for working with incomplete and noisy data,
characteristic of real-world operation [14];

e conducting long-term pilot projects on real assets, aimed not
at demonstrating individual technologies, but at quantitatively assessing
the effectiveness of comprehensive DT-based SHM systems in terms of
enhancing safety, reducing maintenance costs, and extending the service
life of structures. Such projects should be accompanied by careful collec-
tion and analysis of economic indicators;

e exploring economic models and regulatory aspects of im-
plementing such systems, including issues of liability for decisions made
based on Al recommendations, risk insurance, and updating building
codes considering the new possibilities of digital monitoring. Without
solving these issues, even the most advanced technologies will remain
within the framework of laboratory experiments.

Thus, the path from the concept of a Digital Twin to an everyday tool
for a diagnostics engineer lies through solving not so much technical as
systemic and methodological challenges. This requires close and equal
cooperation among specialists in structural mechanics, computer scienc-
es, data theory, and industry management. Only such a comprehensive
approach will allow realizing the transformative potential embedded
in Construction 4.0 technologies for creating a sustainable and safe living
environment.
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