МАШИНОСТРОЕНИЕ

УДК 621.785.532:539.234

СТРУКТУРА И СВОЙСТВА ПОКРЫТИЙ АПУ-N, ПОЛУЧЕННЫХ КАТОДНО-ДУГОВЫМ ОСАЖДЕНИЕМ ПРИ ИОННОМ АССИСТИРОВАНИИ

И. П. Акула¹, М. Ю. Хома²

¹ К. т. н., ведущий научный сотрудник лаборатории наноматериалов и ионно-плазменных процессов ГНУ «Физико-технический институт НАН Беларуси», Минск, Беларусь, e-mail: i.akula@phti.by

² Научный сотрудник лаборатории наноматериалов и ионно-плазменных процессов ГНУ «Физико-технический институт НАН Беларуси», Минск, Беларусь, e-mail: mihmauzer@phti.by

Реферат

Особенность азота — легко встраиваться в структуру алмаза, замещая атомы углерода, что делает его наиболее подходящим элементом для модификации механических, трибологических и электрических свойств алмазоподобных углеродных пленок и покрытий. В настоящей работе исследовано влияние состояния азота на фазовый состав, структуру и свойства покрытий алмазоподобного углерода, полученных методом катодно-дугового осаждения. Азот в процессе осаждения покрытий алмазоподобного углерода подавался в вакуумную камеру как в молекулярном виде, так и ионизированном виде из ионно-лучевого источника. Установлено, что наблюдается существенный рост содержания азота в покрытии алмазоподобного углерода в случае его допирования азотом в ионизированном состоянии. Наличие азота в структуре алмазоподобного углерода приводит к образованию химических связей С-N в конфигурации как с sp², так и с sp³, связанными с атомами углерода. Рост энергии ионов азота стимулирует увеличение содержания sp² гибридизированных атомов углерода в сформированных покрытиях со структурой ароматических колец. Установлено, что в полученных аморфных покрытиях АПУ-N присутствуют трех- и четырехкоординированных атомов углерода, а количество четырехкоординированных атомов углерода и степень беспорядка в трехкоординированных атомах углерода зависят от условий осаждения покрытий. Полученные покрытия обладают высокой твердостью до 4500 кгс/мм², что позволяет отнести их к классу сверхтвердых материалов. Присутствие азота в составе покрытия позволяет изменять его удельное электрическое сопротивление в широких пределах, а также трибологические характеристики в условиях сухого трения. Полученный тонкопленочный материал является перспективным для получения структур с требуемой электропроводимостью, в том числе для изготовления детекторов ионизирующих излучений.

Ключевые слова: алмазоподобный углерод, катодно-дуговое осаждение, ионное ассистирование, структура покрытия, фазовый состав, твердость, электрическое сопротивление.

STRUCTURE AND PROPERTIES OF DLC-N COATINGS OBTAINED BY CATHODIC ARC DEPOSITION WITH ION ASSISTANCE

I. P. Akula, M. Y. Khoma

Abstract

The ability of nitrogen to easily integrate into the diamond structure, replacing carbon atoms, makes it the most suitable element for modifying the mechanical, tribological and electrical properties of diamond-like carbon films and coatings. In this paper, we study the effect of the nitrogen state on the phase composition, structure and properties of diamond-like carbon coatings obtained by cathodic arc deposition. During the deposition of diamond-like carbon coatings, nitrogen was supplied to the vacuum chamber both in molecular form and in ionized form from an ion-beam source. It was found that a significant increase in the nitrogen content in the diamond-like carbon coating is observed in the case of its doping with nitrogen in the ionized state. The presence of nitrogen in the structure of diamond-like carbon leads to the formation of C-N chemical bonds in the configuration with both sp² and sp³ bonded to carbon atoms. An increase in the energy of nitrogen ions stimulates an increase in the content of sp² hybridized carbon atoms in the formed coatings with the structure of aromatic rings. It was found that the obtained amorphous coatings DLC-N contain three- and four-coordinated carbon atoms, and the number of four-coordinated carbon atoms and the degree of disorder in three-coordinated carbon atoms depend on the conditions of coating deposition. The obtained coatings have a high hardness of up to 4500 kgf/mm², which allows them to be classified as superhard materials. The presence of nitrogen in the coating allows changing its specific electrical resistance over a wide range, as well as tribological characteristics under dry friction conditions. The obtained thin-film material is promising for obtaining structures with the required electrical conductivity, including for the manufacture of ionizing radiation detectors.

Keywords: diamond-like carbon, cathodic arc deposition, ion-assisted deposition, coating structure, phase composition, hardness, electrical resistance.

Введение

Азот является уникальным химическим элементом в отношении алмаза, поскольку в отличие от других элементов он наиболее легко встраивается в структуру алмаза, замещая атомы углерода. Азот является основной примесью, по содержанию которой можно судить о свойствах алмаза. Такая особенность делает азот наиболее подходящим элементом для модификации физико-механических свойств покрытий алмазоподобного углерода (АПУ) [1].

Азотсодержащие покрытия алмазоподобного углерода (АПУ-N) обладают рядом ценных качеств и представляют несомненный практический интерес [2–4]. Это обусловлено особенностями взаимодействия азота с углеродом с образованием различных

нитридных фаз и, главным образом, его способностью замещать углерод, образующий четвертные валентные σ -связи в структуре алмаза и алмазоподобных материалов, эффективно насыщать оборванные $\mathrm{sp^3}$ связи на межфазных границах АПУ покрытия. При определенных условиях формирования и достаточно большом содержании азота в углеродном покрытии возможно образование предсказанной β фазы нитрида углерода $\mathrm{C_3N_4}$, расчетная твердость которой превосходит твердость алмаза [5].

При синтезе различных составов АПУ-N используются те же самые методы, как и для осаждения покрытий АПУ [6, 7]. Наиболее широко представлены химические (CVD) методы осаждения, в которых реакционный углеводородсодержащий газ содержит

азот как в молекулярном виде, так и в виде соединений (аммиак и другие) [8]. В настоящее время выполнено большое количество работ по получению покрытий АПУ-N посредством микроволновой или радиочастотной плазмы. Было показано, что гидрогенизированные аморфные покрытия АПУ-N, α -C(N):H, полученные методом радиочастотного плазмостимулированного химического осаждения из газовой фазы (PECVD) в смеси азота и метана, могут быть столь же твердыми, как алмазные покрытия [9]. Радиочастотное осаждение продемонстрировало, что добавление небольшого количества азота приводит к значительному снижению уровня остаточных напряжений при небольшом уменьшении твердости покрытия [9].

По физическим методам осаждения (PVD), используемых для получения покрытий АПУ-N, накоплено меньше информации, чем по химическим методам. Имеются лишь единичные работы, посвященные осаждению азотсодержащих АПУ покрытий с использованием графитовых мишеней [10]. Энергия столкновений ионов углерода с подложкой в физических методах осаждения обычно составляет около 20 эВ, но она может быть увеличена подачей напряжения смещения на подложку [11]. При увеличении энергии ионов азота до 100—200 эВ отношение N/C увеличивается с 0,25 до 0,4; при более высоких энергиях изменение N/C отношения не существенно [12]. Кроме того, состав покрытия АПУ-N сильно зависит от скорости осаждения ионов углерода и азота на подложку. Значения N/C больше чем 0,4 были получены в случае, когда количество ионов азота, внедряемых в растущее покрытие, значительно превышало число ионов углерода [13].

Достижение высокого значения N/C в покрытии АПУ-N является только одним из необходимых условий для получения форм АПУ-N высокой плотности. Однако если атомы углерода не образуют sp³ связей между собой, то материал вряд ли будет обладать необхо-

димыми свойствами, характерными для алмазоподобных материалов. Во всех случаях, когда концентрация азота в покрытии становится больше 10 %, спектры РФЭС показывают сильное уменьшение числа sp^3 связей с одновременным ростом пиков, идентифицируемых с C=N и C=N [14]. Так же уменьшаются величины таких принципиально важных с технической точки зрения параметров, как твердость (с 56 до 10 ГПа), плотность (с 2,8 до 2,0 гр/см-³), ширина запрещенной зоны (с 0,75 эВ до 0,2 эВ), показатель преломления (с 2,5 до 1,6). Однако неоспоримым преимуществом таких покрытий является существенное снижение остаточных напряжений с 4,0 до 1,7 ГПа [15]. В связи с этим представляется перспективным исследование структуры и свойств покрытий АПУ-N с высоким содержанием азота.

Методики получения и исследования покрытий

В настоящей работе покрытия АПУ-N были получены методом импульсного катодно-дугового осаждения. Часть образцов подвергалась одновременному ассистированию ростовой поверхности ионами азота с помощью ионно-лучевого источника (ИЛИ) "Радикал". В качестве подложек использовались полированные пластины из стали 40Х, ситалла и кремния. После размещения образцов в вакуумной камере установки УВНИПА-1-001 выполнялась откачка до остаточного давления около 10-3 Па. Перед формированием покрытия образцы обрабатывались пучком высокоэнергетических ионов аргона с помощью ИЛИ при следующих параметрах: давление аргона 7,5×10-3 Па, ускоряющее напряжение 3500 В при токе 0,05 А, время обработки 30 минут. Выполнено четыре эксперимента по осаждению покрытий АПУ и АПУ-N, условия которых указаны в таблице 1.

Таблица 1 – Условия получения покрытий АПУ и АПУ-N

№ эксп.	Тип покрытия	Источник углеродной плазмы				или			d man
		<i>Ui</i> , B	Ud, B	<i>f</i> , Гц	t, мин	<i>P</i> (<i>N</i> ₂), мПа	Ua, B	la, A	d, мкм
1	ta-C	300	300	2	60	_	_	-	0,15
2	ta-CN				60	11-13	_	_	0,27
3	ta-CN				55	11-13	500	0,05	0,29
4	ta-CN				60	10-11	1000	0,05	0,28

Примечание – Ui – напряжение поджига; Ud – напряжение разряда; f – частота импульсов; t – время осаждения покрытия; Ua – ускоряющее напряжение; la – ускоряющий ток.

Элементный анализ полученных покрытий и определение типов углеродных структур были выполнены с помощью метода РФЭС. Рентгеновские фотоэлектронные спектры были записаны для свежеосажденных покрытий на спектрометре ЭС-2401 с использованием отфильтрованного MgKlpha излучения (1253,6 эВ). Разрешающая способность прибора составляла 1,4 эВ, точность определения положения линий 0,1 эВ. Для очистки и травления внутри камеры образцов использовался пучок ионов Ar с энергией 1 кэВ и плотностью ионного тока 2,3 мкА/см². Фазовый состав осажденных покрытий исследовался с использованием методик спектроскопии комбинационного рассеяния света на спектрометре Confotec NR-500 (SOL Instruments, Республика Беларусь) на длине волны аналитического излучения 532 нм при мощности 30 мВт. Съем спектра проводился десять раз в течение 5 секунд, после чего получался итоговый усредненный спектр. Твердость покрытий оценивалась с использованием метода восстановленного отпечатка на микротвердомере ПМТ-3. В качестве индентора применялась алмазная пирамида Кнупа при нормальной нагрузке 20 г и времени выдержки 10 с. Было выполнено по 4 измерения длины вытянутой диагонали отпечатка для каждого образца. Удельное электрическое сопротивление покрытий (Ω) , осажденных на полированные ситалловые пластины, измерялось с помощью прибора UNI-T 533. Трибологические исследования проводились на стенде, работающем по схеме "палец-диск". В качестве контртела использовался шарик с полированной поверхностью из стали ШХ15 с диаметром 5,5 мм. Исследования проводились при нормальной нагрузке на контртело 1 Н и радиусе вращения контртела 10 мм.

Обсуждение результатов

Отношение содержания азота к углероду N/C для осажденных покрытий АПУ-N определялось по отношению интенсивности линий N1s и C1s из данных РФЭС. В покрытиях АПУ-N, осажденных без ионного ассистирования, углерод взаимодействует только с молекулами азота в окружающем газе, что приводит к незначительному внедрению атомов азота в растущее покрытие. При этом содержание азота в покрытии составляет 11.0 ат.%. В случае ионизации азота при ускоряющем напряжении ИЛИ 500 В во время осаждения покрытия АПУ-N ионы углерода взаимодействуют с активными ионами азота. Это обеспечивает более активное внедрение азота в формируемое покрытие с образованием химической связи между углеродом и азотом, а также приводит к увеличению концентрации химически активных ионов азота до 40,4 ат.%, что в свою очередь ведет к более глубокому внедрению атомов азота в покрытие. Однако рост ускоряющего напряжения источника ионов до 1000 В приводит к распылению осаждаемого тонкопленочного материала, что сказывается на снижении содержания азота в покрытии до 37,9 ат.%.

В таблице 2 представлены результаты обработки спектров РФЭС – позиция линии и % каждого пика для C1s и N1s спектров покрытий АПУ-N, полученных при различном ускоряющем напряжении источника ионов. Если азот при осаждении покрытия АПУ-N используется в молекулярном состоянии, то содержание sp гибридизированных атомов углерода (38,3 %) превышает количество sp³ (23,7 %) и sp² (23,7 %) гибридизированных атомов углерода. Большинство атомов азота (66,5 %) в таком случае связаны с sp²

атомами углерода $C\equiv N$ связями. При осаждении покрытия АПУ-N с ассистированием ионами азота при ускоряющем напряжении 500 В содержание атомов углерода в sp^2 конфигурации возрастает до 46 %, в то время как содержание sp^3 и sp^1 гибридизированных атомов углерода уменьшается до 12,4 % и 28,5 % соответственно. В то же время содержание атомов азота, связанных с sp^2 углеродом, уменьшается до 63,5 %. Количество атомов азота, связанных с sp^3

и sp углеродом, возрастает до $24,1\,\%$ и $7,6\,\%$ соответственно. Дальнейший рост ускоряющего напряжения источника ионов до $1000\,\mathrm{B}$ приводит к увеличению числа $\mathrm{sp^2}$ атомов углерода и атомов азота, связанных с sp углеродом, и уменьшению количества sp атомов углерода и атомов азота, связанных с $\mathrm{sp^2}$ углеродом. Содержание $\mathrm{sp^3}$ атомов углерода и атомов азота, связанных с $\mathrm{sp^3}$ атомами углерода, изменяется не существенно.

Таблица 2 – Результаты разложения C1s и N1s спектров для покрытия АПУ-N

Пик	Тип связи	Номер образца (таблица 1)							
		2)	3		4			
		Есв, эВ	%	Есв, эВ	%	Есв, эВ	%		
C1s (1)	C-C	284,6	4,1	284,9	7,1	284,6	7,9		
C1s (2)	C=N	285,4	28,7	285,3	46,0	285,4	50,0		
C1s (3)	C-N	286,3	38,3	286,4	28,5	286,5	17,7		
C1s (4)	C≡N	287,1	23,7	287,6	12,4	287,4	13,6		
C1s (5)	C-O	288,7	5,2	289,0	6,0	288,6	10,8		
N1s (1)	C-N	398,3	18,0	398,1	24,1	398,2	24,4		
N1s (2)	C≡N	399,0	4,5	399,2	7,6	399,2	12,7		
N1s (3)	C=N	400,0	66,5	400,6	63,5	400,7	47,5		
N1s (4)	N-N N-O	401,6	11,0	403,3	4,8	402,9	15,4		

Результаты исследования структуры покрытий АПУ и АПУ-N с использованием спектроскопии комбинационного рассеяния света представлены на рисунке 1. В области (1200-1700) см-1 можно наблюдать наличие широкого пика, что говорит об аморфной структуре полученного тонкопленочного материала [1]. Можно видеть, что добавка молекулярного азота в объем вакуумной камеры приводит к незначительному нарушению формы спектра в области низких частот. В то же время присутствие азота в ионизированном состоянии существенно преобразует форму спектра из-за явного появления сигнала в области частот 1350 см⁻¹. Такое поведение связано с ростом D пика. ассоциируемого с атомами углерода с конфигурацией ароматических колец, находящихся в sp² гибридизированном состоянии. Для более точного описания фазового состояния углерода было выполнено разложение основного пика спектра КРС на составляющие D и G пики. Обработка была выполнена с помощью функции Гаусса-Лоренца в пакете MathLab. Результаты представлены в таблице 3.

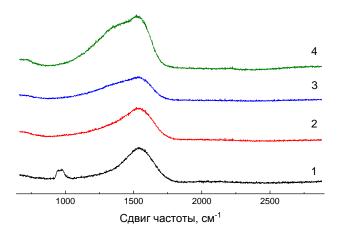


Рисунок 1 – Спектры КРС для покрытий АПУ (номер спектра соответствует номеру образца из таблицы 1)

Таблица 3 – Результаты разложения спектра КРС

№ эксп.	I _D /I _G	<i>D</i> пик			G пик			
		<i>К</i> , см⁻¹	<i>I</i> , отн.ед.	<i>W</i> , cм⁻¹	<i>К</i> , см⁻¹	<i>I</i> , отн.ед.	<i>W</i> , cм⁻¹	
1	0,30	1383,2	447,9	313,4	1554,5	1512,1	214,8	
2	0,65	1383,3	766,4	383,4	1555,5	1186,7	204,1	
3	1,30	1389,2	905,2	379,8	1557,8	701,0	169,2	
4	1,49	1380,0	2258,1	373,0	1554,8	1506,7	156,7	

Примечание – K – положение максимума пика; I – интенсивность пика; W – ширина пика на полувысоте.

Исследования показали, что при добавлении азота в поток углеродной плазмы и по мере роста энергии ионов азота наблюдается рост и уширение пика D с одновременным снижением интенсивности и ширины пика G. Подобный результат наблюдался в [16], где энергию ионов азота регулировали подачей напряжения смещения на основу. Согласно [17] подобное изменение пиков D и G говорит либо о наличии четырехкратно координированных атомов углерода, либо о беспорядке углов связи для атомов углерода с тройной связью. Таким образом, можно сделать вывод, что в полученных аморфных пленках АПУ-N присутствуют трехи четырехкоординированные атомы углерода, а количество четырехкоординированных атомов углерода и степень беспорядка в трехкоординированных атомах углерода зависят от условий

осаждения покрытий. Из данных, представленных в таблице 3, наиболее важным является параметр I_D/I_G , который характеризует степень разупорядоченности сформированной структуры тонкопленочного материала.

Можно видеть, что как добавка азота в молекулярном состоянии, так и его ионизация приводят к росту разупорядоченности структуры покрытия алмазоподобного углерода. Считается [18], что бомбардировка частицами с высокими энергиями увеличивает подвижность атомов на растущей поверхности при высоких температурах осаждения и этим вызывает структурный беспорядок. Затем кластер С–N, аналогичный неупорядоченной турбостратной фазе (хаотично повернутое расположение гексагональных слоев), может развиться в аморфной матрице [19].

На рисунке 2 представлены результаты исследования твердости покрытий. Покрытия АПУ показали твердость около 4100 кгс/мм². С учетом малой толщины покрытий и достаточно высокой нагрузки на индентор, при которой на результаты оказывает влияние основа, данное покрытие можно классифицировать как сверхтвердое. Добавка молекулярного азота привела к снижению твердости покрытий до порядка 3000 кгс/мм², что вероятно связано с потерей энергии ионов углерода на упругих столкновениях с молекулами газа. В то же время азот в ионизированном состоянии при ускоряющем напряжении 500 В вероятно приводит как к образованию С-N связей в растущем покрытии, так и способствует формированию С-С связей в sp³ конфигурации, что привело к получению покрытия АПУ-N с твердостью порядка 4500 кгс/мм². Дальнейший рост ускоряющего напряжения, прямо связанного с энергией ионов азота, привел к падению твердости до порядка 2100 кгс/мм².

Вероятно, большие энергии ионов в потоке плазмы стимулируют преимущественное образование C-C связей в $\rm sp^2$ конфигурации, поскольку имеется диапазон энергий (40–70) $\rm sB$, в котором содержание связей алмазного типа в покрытиях АПУ является максимальным для типа ta-C [20].

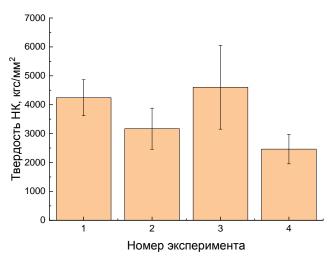


Рисунок 2 – Твердость покрытий АПУ и АПУ-N

Результаты определения удельного электрического сопротивления покрытий АПУ-N представлены на рисунке 3. Добавка азота оказывает существенное влияние на удельное электрическое сопротивление покрытий $(\Omega/\text{kb.})$.

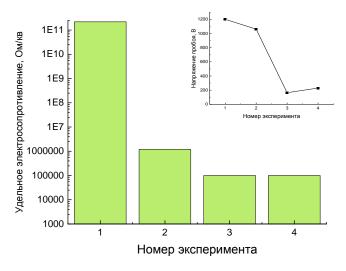


Рисунок 3 – Удельное электрическое сопротивление и напряжение пробоя (вставка) покрытий АПУ и АПУ-N

Азот, попадающий в плазму в молекулярном/атомарном состоянии, приводит к снижению параметра Ω /кв более чем на 5 порядков. Ионизация газа способствует дальнейшему снижению Ω /кв с 10^6 Ом/кв для атомарного газа до порядка $(1-2)\times10^5$ Ом/кв для покрытий АПУ-N, полученных с использованием ассистирования ионами азота. Причем параметр Ω /кв слабо зависит от энергии ионов азота в нашем случае. В то же время стоит обратить внимание на напряжение пробоя, которое для покрытия АПУ-N, полученного при ускоряющем напряжении 1000 В источника ионов "Радикал", составляет 230 В и превышает значение этого параметра для покрытия АПУ-N, полученного при напряжении 500 В и равного 164 В.

Результаты трибологических испытаний представлены на рисунке 4. Испытания показали, что наличие молекулярного азота в реакционной области приводит к существенному повышению коэффициента трения до 0,30 с 0,26 для не содержащего азот покрытия АПУ.

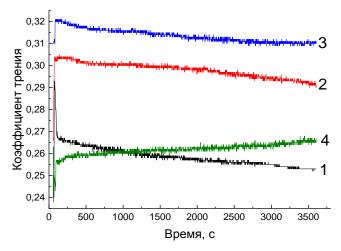


Рисунок 4 – Коэффициент трения покрытий АПУ-N (номер на графике соответствует номеру эксперимента из таблицы 1)

В случае ионизированного азота (ускоряющее напряжение 500 В) происходит дальнейший рост коэффициента трения до 0,315. Однако при более высоких энергиях ионного источника (1000 В) коэффициент трения покрытия АПУ-N+ снижается до 0,26. Вероятно, такой характер трения связан с процессами, проходящими в области контакта покрытия с контртелом.

На рисунке 5 представлены изображения области износа контртела и дорожки трения на поверхности покрытия, образованные в результате испытаний.

Во-первых, изображения дорожек трения показывают, что не наблюдается какого-либо заметного износа покрытия для всех условий эксперимента. В дорожке нет следов отслаивания покрытия. что говорит о его хорошей адгезии к основе. Во-вторых. не наблюдается интерференционного окрашивания в границах дорожек, что подтверждает минимальное присутствие процессов абразивного изнашивания покрытия. В то же время на периферии области износа контртела присутствуют следы продуктов износа, которые, скорее всего, представляют собой мелкодисперсную фракцию материала самого контртела. Это говорит о существенно более высокой твердости покрытия по сравнению с контртелом. Причем, чем выше значение устоявшегося коэффициента трения покрытия, тем больше вынесенного материала присутствует на периферии пятна износа. Вероятно, данный материал может образовывать отдельный слой в зоне контакта покрытия с контртелом, наличие которого и определяет величину коэффициента трения трибопары. Область контакта, определяемая по диаметру пятна износа контртела, коррелирует с коэффициентом трения и составляет 3,14×10-2 мм² для минимальных значений коэффициента трения 0,26 (образцы 1 и 4) и 5,39×10-2 мм².

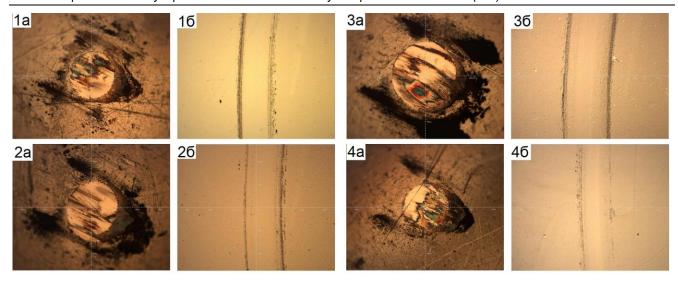


Рисунок 5 – Изображение области износа контртела (a) и дорожки трения (б) для образцов покрытия (1–4, номер измерения соответствует номеру эксперимента из таблицы 1)

Заключение

Проведенные исследования показали, что способ введения азота в состав покрытий АПУ-N оказывает существенное влияние на формирование их структуры. Азот встраивается в структуру алмазоподобного углерода в виде примеси замещения, образуя sp² и sp^3 связи с атомами углерода типа C - N и C = N - C соответственно. Следствием азотирования является повышение количества sp² связанных атомов углерода в покрытии, что подтверждается данными как РФЭС, так и спектроскопии КРС. При этом высокая энергия ионов азота способствует графитизации покрытия в результате тепловыделения и значительного нагрева соударительной области в растущем покрытии. Показано, что можно управлять удельным электросопротивлением тонкопленочных алмазоподобных материалов в широких пределах (105 – 1012 Ом/кв) при изменении условий внедрения азота в формируемое покрытие. Получен тонкопленочный материал, твердость которого достигает 4500 кгс/мм², что позволяет отнести его к классу сверхтвердых материалов. Трибологические испытания показали, что не наблюдается какого-либо заметного износа покрытия для всех условий эксперимента. В дорожке трения отсутствуют следы отслаивания покрытия, что говорит о его хорошей адгезии к основе.

Полученные результаты являются важными для изготовления детекторов ионизирующих излучений, используемых в частности при создании сверхпроводящего коллайдера протонов и тяжёлых ионов NICA (Дубна, Россия).

Список цитированных источников

- Nitrogen-doped CVD diamond: Nitrogen concentration, color and internal stress / A. M. Zaitsev, N. M. Kazuchits, V. N. Kazuchits [et al.] // Diamond and Related Materials. – 2020. – Vol. 105. – Paper 107794.
- Effects of nitrogen incorporation on N-doped DLC thin film electrodes fabricated by dielectric barrier discharge plasma: Structural evolution and electrochemical performances / M. Nilkar, F. E. Ghodsi, S. Jafari [et al.] // Journal of Alloys and Compounds. – 2021. – Vol. 853. – Paper 157298.
- Nitrogen-doped diamond-like carbon as optically transparent electrode for infrared attenuated total reflection spectroelectrochemistry / N. Menegazzo, M. Kahn, R. Berghauser [et al.] // Analyst. – 2011. – Vol. 136. – P. 1831–1839.
- Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by Filtered Cathodic Vacuum Arc (FCVA) technique / D. Bootkul, B. Supsermpol, N. Saenphinit [et al.] // Applied Surface Science. – 2014. – Vol. 310. – P. 284–292.
- Liu, A. Y. Prediction of new low compressibility solids / A. Y. Liu, M. L. Cohen // Science. – 1989. – Vol. 245. – P. 841–845.

- Корсунский, Б. Л. На пути к нитриду углерода / Б. Л. Корсунский, В. И. Пепекин // Успехи химии. – 1997. – № 11. – С. 1003–1014.
- Muhl, S. A review of the preparation of carbon nitride films / S. Muhl, J. M. Me'ndez // Diamond and Related Materials. – 1999. – Vol. 8. – P. 1809–1830.
- Zhang, Y. Crystalline carbon nitride films formation by chemical vapor deposition / Y. Zhang, Z. Zhou, H. Li // Applied Physics Letters. – 1996. – Vol. 68. –P. 634–636.
- Freire, F. L. Amorphous hydrogenated carbon-nitrogen films deposited by plasma-enhanced chemical vapor deposition / F. L. Freire // Japan Journal of Applied Physics. – 1997. – Vol. 36, N 7B. – P. 4886–4892.
- Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation / A. R. Merchant, D. G. McCulloch, D. R. McKenzie [et al.] // Journal of Applied Physics. – 1996 – Vol. 79. – P. 6914–6919.
- Amorphous carbon and carbon nitride films prepared by filtered arc deposition and ion assisted arc deposition / J. P. Zhao, X. Wang, Z. Y. Chen [et al.] // Materials Letters. – 1997. – Vol. 33. – P. 41–45.
- Preparation of CNx films by ion beam assisted filtered cathodic arc deposition / C. Spaeth, M. Kühn, U. Kreissig, F. Richter // Diamond and Related Materials. – 1997. – Vol. 6. – P. 626–630.
- Hartmann, J. Characterization of carbon nitride produced by highcurrent vacuum arc deposition / J. Hartmann, P. Siemroth, J. Schultrich // Journal of Vacuum Science Technology A. – 1997. – Vol. 15. – P. 2983–2987.
- 14. X-ray diffraction studies of the effects of N incorporation in amorphous CNx materials / J. K. Walters, M. Kuhn, C. Spaeth [et al.] // Journal of Applied Physics. – 1998. – Vol. 83. – P. 3529–3534.
- Optical emission spectroscopy of the nitrogen arc in an archeated beam source used for synthesis of carbon nitride films / N. Xu, Y. Du, Z. Ying [et al.] // Journal of Physics D: Applied Physics. 1997. Vol. 30. P. 1370–1376.
- Optical and mechanical properties of amorphous CN films / S. Lee,
 S. Jin Park, Soo-ghee Oh [et al.] // Thin Solid Films. 1997. –
 Vol. 308–309. P. 135–140.
- Modeling studies of amorphous carbon / D. Beeman, J. Silverman, R. Lynds, M. R. Anderson // Physics Review B. – 1984. – Vol. 30, Iss. 2. – P. 870–875.
- Dillon, R. O. Use of Raman Scattering to Investigate Disorder and Crystallite Formation in As-Deposited and Annealed Carbon Films / R. O. Dillon, J. A. Woolam, V. Katkanant // Physical Review B. – 1984. – Vol. 29. – P. 3482–3489.

- Preparation of carbon nitride thin films by ion beam assisted deposition and their mechanical properties / M. Kohzaki, A. Matsumuro, T. Hayashi [et al.] // Thin Solid Films. – 1997. – Vol. 308–309. – P. 239–244.
- Preparation and properties of high density, hydrogen free hard carbon films with direct ion beam or arc discharge deposition / J. P. Hirvonen, J. Koskinen, R. Lappalainen, A. Anttila // Materials Science Forum. – 1990. – Vol. 52. – P. 197–216.

References

- Nitrogen-doped CVD diamond: Nitrogen concentration, color and internal stress / A. M. Zaitsev, N. M. Kazuchits, V. N. Kazuchits [et al.] // Diamond and Related Materials. – 2020. – Vol. 105. – Paper 107794.
- Effects of nitrogen incorporation on N-doped DLC thin film electrodes fabricated by dielectric barrier discharge plasma: Structural evolution and electrochemical performances / M. Nilkar, F. E. Ghodsi, S. Jafari [et al.] // Journal of Alloys and Compounds. – 2021. – Vol. 853. – Paper 157298.
- Nitrogen-doped diamond-like carbon as optically transparent electrode for infrared attenuated total reflection spectroelectrochemistry / N. Menegazzo, M. Kahn, R. Berghauser [et al.] // Analyst. – 2011. – Vol. 136. – P. 1831–1839.
- Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by Filtered Cathodic Vacuum Arc (FCVA) technique / D. Bootkul, B. Supsermpol, N. Saenphinit [et al.] // Applied Surface Science. – 2014. – Vol. 310. – P. 284–292.
- Liu, A. Y. Prediction of new low compressibility solids / A. Y. Liu, M. L. Cohen // Science. – 1989. – Vol. 245. – P. 841–845.
- Korsunskij, B. L. Na puti k nitridu ugleroda / B. L. Korsunskij, V. I. Pepekin // Uspekhi himii. – 1997. – № 11. – S. 1003–1014.
- Muhl, S. A review of the preparation of carbon nitride films / S. Muhl, J. M. Me'ndez // Diamond and Related Materials. – 1999. – Vol. 8. – P. 1809–1830.
- Zhang, Y. Crystalline carbon nitride films formation by chemical vapor deposition / Y. Zhang, Z. Zhou, H. Li // Applied Physics Letters. – 1996. – Vol. 68. –P. 634–636.
- Freire, F. L. Amorphous hydrogenated carbon-nitrogen films deposited by plasma-enhanced chemical vapor deposition / F. L. Freire // Japan Journal of Applied Physics. – 1997. – Vol. 36, N 7B. – P. 4886–4892.
- Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation / A. R. Merchant, D. G. McCulloch, D. R. McKenzie [et al.] // Journal of Applied Physics. – 1996 – Vol. 79. – P. 6914–6919.

- Amorphous carbon and carbon nitride films prepared by filtered arc deposition and ion assisted arc deposition / J. P. Zhao, X. Wang, Z. Y. Chen [et al.] // Materials Letters. – 1997. – Vol. 33. – P. 41–45.
- Preparation of CNx films by ion beam assisted filtered cathodic arc deposition / C. Spaeth, M. Kühn, U. Kreissig, F. Richter // Diamond and Related Materials. – 1997. – Vol. 6. – P. 626–630.
- Hartmann, J. Characterization of carbon nitride produced by highcurrent vacuum arc deposition / J. Hartmann, P. Siemroth, J. Schultrich // Journal of Vacuum Science Technology A. – 1997. – Vol. 15. – P. 2983–2987.
- X-ray diffraction studies of the effects of N incorporation in amorphous CNx materials / J. K. Walters, M. Kuhn, C. Spaeth [et al.] // Journal of Applied Physics. – 1998. – Vol. 83. – P. 3529–3534.
- Optical emission spectroscopy of the nitrogen arc in an arc-heated beam source used for synthesis of carbon nitride films / N. Xu, Y. Du, Z. Ying [et al.] // Journal of Physics D: Applied Physics. – 1997. – Vol. 30. – P. 1370–1376.
- Optical and mechanical properties of amorphous CN films / S. Lee,
 Jin Park, Soo-ghee Oh [et al.] // Thin Solid Films. 1997. –
 Vol. 308–309. P. 135–140.
- Modeling studies of amorphous carbon / D. Beeman, J. Silverman, R. Lynds, M. R. Anderson // Physics Review B. – 1984. – Vol. 30, Iss. 2. – P. 870–875.
- Dillon, R. O. Use of Raman Scattering to Investigate Disorder and Crystallite Formation in As-Deposited and Annealed Carbon Films / R. O. Dillon, J. A. Woolam, V. Katkanant // Physical Review B. – 1984. – Vol. 29. – P. 3482–3489.
- Preparation of carbon nitride thin films by ion beam assisted deposition and their mechanical properties / M. Kohzaki, A. Matsumuro, T. Hayashi [et al.] // Thin Solid Films. – 1997. – Vol. 308–309. – P. 239–244.
- Preparation and properties of high density, hydrogen free hard carbon films with direct ion beam or arc discharge deposition / J. P. Hirvonen, J. Koskinen, R. Lappalainen, A. Anttila // Materials Science Forum. – 1990. – Vol. 52. – P. 197–216.

Материал поступил 07.07.2025, одобрен 15.07.2025, принят к публикации 16.07.2025