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Abstract 
The microstructure of cement paste is extremely complex and heterogeneous, consists of randomly distributed phases with an arbitrary geometry, 

formed during the hydration process. The key phase of cement paste – calcium silicate hydrate exhibits distinct viscoelastic behavior causing creep in 
cement-based composites. These reasons make the problem of evaluating effective stiffness characteristics rather difficult, since stress-strain 
relationships under viscoelastic behavior are usually described using the principle of aging-time superposition, represented in the form of the Stiltes 
integral, which has not an analytical solution. 

Existing approaches to solving this problem involve two principles: the Laplace–Carson transform and the effective medium theory. This makes 
possible to find a solution for the evaluate effective stiffness characteristics under viscoelastic behavior, but only for a limited geometric shape of 
inclusions in the form of an ellipsoid and its related shapes. However, such shapes are not fully matching the real geometric shape of most phases of 
cement paste, especially for capillary porosity. 

The paper presents one more approach to solving the problem of effective stiffness characteristics of cement paste based on a FEA 
homogenization facilitates to evaluate effective stiffness properties for an arbitrary phase geometry, through introducing into the variational formulation 
the numerical inversion of the Stieltjes integral describing its viscoelastic behaviour. In addition, this approach best implements the solidification 
mechanism for the history of the aging stress-strain relation during the hydration process. 
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ПРИНЦИП ГОМОГЕНИЗАЦИИ ЖЕСТКОСТНЫХ ХАРАКТЕРИСТИК ЦЕМЕНТНОГО КАМНЯ ПРИ ВЯЗКОУПРУГОМ 
ПОВЕДЕНИИ  

В. В. Кравченко 

Реферат 
Микроструктура цементного камня чрезвычайно сложна и неоднородна, состоит из хаотично распределенных фаз с произвольной 

геометрией, образуемых в процессе гидратации. При этом следует учитывать, что основная фаза цементного камня – гидросиликат кальция – 
проявляет ярко выраженное вязкоупругое поведение, обуславливая возникновение ползучести в цементных композитах. Эти причины делают 
задачу оценки его эффективных жесткостных характеристик достаточно сложной, поскольку напряженно-деформированное состояние в условиях 
вязкоупругого поведения принято рассматривать с позиций теории нелинейной наследственности, представляемой в виде интеграла Стилтьеса, 
не имеющего аналитического решения. 

Существующие подходы к решению обозначенной проблемы сочетают два принципа: преобразование Лапласа – Карсона и положения 
теории эффективной среды, что позволяет находить решение задачи эффективных свойств композитов при вязкоупругом поведении. Однако 
поскольку получаемые решения в рамках такого подхода основаны на положениях теории эффективной среды, это приводит к достаточно 
существенному ограничению, накладываемому на геометрическую форму фаз композита, которые могут быть представлены только в виде 
эллипсоида и его производных форм, что не совсем соответствует реальной геометрической форме большинства фаз цементного камня, в 
особенности капиллярной пористости. 

В статье представлен еще один подход к решению задачи эффективных жесткостных характеристик цементного камня при вязкоупругом 
поведении, основанный на положениях гомогенизации методом конечных элементов, позволяющей оценивать эффективные жесткостные 
характеристики композитов с произвольной геометрической формой фаз, в вариационную формулировку которого вводится численное 
обращение интеграла Стилтьеса, описывающего вязкоупругое поведение цементного камня. Кроме того, этот подход наилучшим образом 
реализует положения теории солидификации при формировании истории напряженно-деформированного состояния в период гидратации. 

 
Ключевые слова: цементный камень, гомогенизация, вязкоупругость, теория солидификации, МКЭ. 

 

 
Introduction 
Cement paste1 is a crucial phase of cement-based composites which 

in many respects determines their mechanical behavior at an early age. It 
is a composite consisting of a solid phase (hydration products and unhy-
drated cement), a liquid phase (water), and a gas phase (air) with a com-
plex and heterogeneous structure formed during the hydration process. 

One of the key features of cement paste is that the solid phase has 
the distinctly viscoelastic behavior which originates in the calcium silicate 
hydrates, and causes creep in cement-based composites [1]. 

                                                           

1 Here the term «cement paste» refers to the hardened cement paste. 

There are many prediction models for evaluating the effective stiff-
ness characteristics of cement paste based on the principles of multiscale 
modeling, and dealing with the following techniques of homogenization: 

1. Analytical homogenization, including two class of effective theo-
ries: effective medium theory and differential effective medium theory [2]. 

2. Numerical homogenization based, including two methods based 
on: finite element analysis (FEA) [3] and the Fourier transform [4]. 

The obvious drawback of these models is that they consider cement 
paste through linear elastic behaviour. At the same, there are only a few 
models taking into consideration viscoelastic behavior of cement paste. 
The models [5, 6] use the Laplace–Carson transform which converts non-
ageing linear viscoelastic behavior into linear elastic one, allowing to 
directly apply the analytical homogenization schemes. Then, the numeri-
cal inversion of the Laplace–Carson transform is used for the aging vis-
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coelastic solution. The model [7] uses a principle based on Volterra inte-
gral operators, allowing to directly apply the Mori-Tanaka scheme for the 
aging viscoelastic solution. 

Despite the fact that these models allow for the possibility of linear 
viscoelastic behavior, they still have restrictions imposed by the analytical 
homogenization schemes related to the geometric shape of the inclu-
sions, assuming to be spherical in most cases. This considerable as-
sumption may decrease accuracy of predicting the effective stiffness 
characteristics, since it is a well-known fact that the shape of most hydra-
tion products is not spherical. This is especially so for capillary porosity 
with a complex morphology, including various geometric shapes with 
irregular spatial distribution. 

This paper presents approach based on the FEA homogenization, 
which is not sensitive to a geometric shape of inclusions, through intro-
ducing into the variational formulation the numerical inversion of the fol-
lowing Stieltjes integral, expressing the principle of superposition [8]: 

𝜺(𝑡) = ∫ 𝕁(𝑡, 𝑡′) 
𝑡

0
𝑑𝝈(𝑡′) ,   (1) 

where 𝜺(𝑡) – is the second-order microscopic strain tensor at time 𝑡 
representing the age of a cement-based composite; 

𝕁(𝑡, 𝑡′) – is the fourth-order compliance tensor representing the 
strain at time 𝑡 caused by a stress that has been acting since time 𝑡′; 

𝝈(𝑡′) – is the second-order microscopic stress tensor at time 𝑡′. 
The time-dependent compliance tensor contains a time-dependent 

elastic part and a time-dependent viscous part [8]: 

𝕁(𝑡, 𝑡′) = ℂ(𝑡′)−1 + 𝕁𝒗(𝑡, 𝑡
′),   (2) 

where ℂ – is the fourth-order elasticity tensor; 
𝕁𝒗 – is the fourth-order viscoelastic compliance tensor. 
The principle of superposition relates the stress and strain histories 

states that the response to a sum of two stress (or strain) histories is the 
sum of the responses to each of them taken separately [8]. For the mi-
crostructural development of cement paste caused by a hydration pro-
cess, the stress and strain histories can be expressed throw the solidifica-
tion theory that assumes that fictitious clusters of cement paste are grad-
ually added to the existing ones. Cement paste is considered as a set of 
all formed clusters (see Figure 1). Since clusters are formed at different 
ages, history variables for different clusters are treated as mutually inde-
pendent variables [9, 10]. 

The presented approach based on the FEA homogenization imple-
ments the principles of the solidification theory to express strain and 
stress history. 

 

 
 

Figure 1 – Schematic representation of solidifying clusters of cement paste, according to [10] 
 
Basic assumptions and principles 
1. The microstructure of cement paste is considered at two scales: 

– Level 1: Unhydrated cement consists of the 𝐶3𝑆1, 𝐶2𝑆, 𝐶3𝐴, 
and 𝐶4𝐴𝐹 minerals, and hydration products consists of the 𝐶𝑆𝐻, 𝐶𝐻, 
𝐶6𝐴𝑆3̅𝐻32, 𝐶4𝐴𝑆̅𝐻12, 𝐶3𝐴𝐻6, and 𝐹𝐻3 compounds. 

– Level 2: Cement paste consists of homogenous unhydrated ce-
ment, a homogenous solid of hydration products, and porosity, including 
a liquid phase (water) and a gas phase (air). 

2. The hydration-induced evolution of the volume fractions of clinker, 
hydrates, and pores is quantified based on the stoichiometry of hydration 
reactions of clinker phases. The hydration reactions of Portland cement 
were taken from the model of Tennis and Jennings [11]. 

3. Hydration of clinker phases is modeled through the kinetics model 
of Parrot and Killoh [12]. 

4. The morphology of cement particles is modeled as spherical, and 
the hydration products as prolate or oblate spheroidal that is isotropically 
oriented in the representative element volume (REV). 

                                                           

1 The cement chemist notation is used.  

5. The effective elastic tensor of homogenous unhydrated cement 
(ℂ𝑢𝑐) and a homogenous solid of hydration products (ℂℎ𝑝) are estimated 

using the Self-Consistent scheme [2]. 
6. The REV of cement paste is a voxel-based grid considered no 

more 50×50×50 µm in size with a resolution of 1 µm3/voxel. 
7. The voxel-based microstructural model [13] is used for the spatial 

distribution the phases of cement paste over the REV during the hydra-
tion process. 

8. Continuous hydration time is discretized into 𝑛 time intervals 
∆𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1, 𝑖 = 1, 𝑛̅̅ ̅̅̅. 

9. A hexahedral mesh is generated based on the voxel-based REV, 
and consists of the following finite elements: 

– for strain field: a trilinear 8 nodes hexahedron with 3 degree-of-
freedom (DOF) per node; 

– for stress field: a trilinear 8 nodes hexahedron with 1 DOF per 
node. 

10. The hexahedral mesh is divided into four subdomains related to 
the phases of cement paste. Each finite element has the same elasticity 
tensor within a subdomain. 

11. Periodic boundary conditions are implemented to approximate 
the REV as an infinite system with a structural periodicity. 
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12. Since, only the 𝐶𝑆𝐻 phase has viscoelastic behavior, the modi-
fied model from [14] is used for the compliance tensor: 

𝕁(𝑡, 𝑡′) = ℂℎ𝑝(𝑡
′)−1 + 𝕁𝐶𝑆𝐻(𝑡, 𝑡

′) =    

=  ℂℎ𝑝(𝑡
′)−1 +  𝔹

1

𝐶𝒗(1−𝜈
2)
𝑙𝑛 (1 +

𝑡−𝑡′

𝜏
),  (3) 

where 𝐶𝒗 – is the contact creep module calculated by [14]; 
𝔹 – is the fourth-order tensor for transformation into three-dimension 

stress-strain relationship, which depends on the elastic properties of the 
𝐶𝑆𝐻 phase [8]; 

𝜈 – is the Poisson's ratio of the 𝐶𝑆𝐻 phase; 
𝜏 – is the characteristic viscous time, 1,66 s [14]. 
13. The numerical inversion of the integral (1) is used according to 

the trapezoidal rule [8]: 

𝜺𝑖 =  ∑ [
1

2
(𝕁(𝑡𝑖 , 𝑡𝑗) +  𝕁(𝑡𝑖 , 𝑡𝑗−1)) ∶  ∆𝝈𝑗] =

𝑖
𝑗=1 ∑ 𝕁(𝑡𝑖 , 𝑡𝑗−1/2) ∶

𝑖
𝑗=1

 ∆𝝈𝑗 for 𝑖 ≥ 1,              (4) 

where 𝜺𝑖 – is the second-order stress tensor of 𝑖-th time interval; 
𝑡𝑖, 𝑡𝑗 – is time related to the end of 𝑖-th and 𝑗-th time interval, respec-

tively; 
𝑡𝑗−1/2 – is time related to the middle of 𝑗-th time interval; 

∆𝝈𝑗  – is the incremental of the second-order stress tensor of 𝑗-th 

time interval; 
«:» – is the double dot product. 
Then, the difference of the second-order stress tensor at 𝑖-th time in-

terval (∆𝜺𝑖) can be expressed by [8, 15]: 

∆𝜺𝑖 = 𝕁(𝑡𝑖 , 𝑡𝑖−1/2) ∶  ∆𝝈𝑖 + ∑ [(𝕁(𝑡𝑖 , 𝑡𝑗−1/2) −
𝑖−1
𝑗=1

− 𝕁(𝑡𝑖−1, 𝑡𝑗−1/2)) ∶  ∆𝝈𝑗] for 𝑖 > 𝑗.            (5) 

Consequently, the stress tensor at 𝑖-th time interval is calculated by: 

𝝈𝑖 = 𝝈𝑖−1 + ∆𝝈𝑖 .    (6)   

14. The relation between the macroscopic stress and strain tensors 
is used is used to calculate the effective constitutive fourth-order tensor 
ℂ𝑒𝑓𝑓  [11]: 

〈𝝈〉𝑉 = ℂ𝑒𝑓𝑓 ∶ 〈𝜺〉𝑉,    (7) 

where 〈∗〉𝑉 – is the average of a field 𝒇 over the REV, 〈𝒇〉𝑉 =
1

𝑉
∫ 𝒇(𝒙)𝑑𝑉
𝑉

. 

 
Variational formulation 
Following continuum micromechanics, the composite microstructure 

can be considered as a REV composed of homogeneous phases, and 
subjected to a macroscopic strain field (�̅�) prescribed at its boundaries. 
The local strain field of an arbitrary point in the REV 𝜺(𝒙) can be split 

into �̅� and a periodic fluctuation strain �̃�(�̃�(𝒙)), which accounts for the 

presence of heterogeneities [16]. 
Then, using the principle of virtual work and introducing an additional 

vectoral Lagrange multiplier as an additional unknown to make the aver-
age of �̃� over the REV is vanish, the following variational formulation 
gives [17]: 

Find (�̃�, 𝝀) ∈ 𝑉 such that: 

∫ 𝝈(�̃�(𝒙)) ∶
𝑽

�̃�(�̃�)𝑑𝑉 + ∫ 𝝀 ∙ �̃�𝑑𝑉 +
𝑉

∫ 𝜽 ∙ �̃�
𝑉

𝑑𝑉 = 

=  0 ∀(�̃�, 𝜽) ∈ 𝑉,     (8) 

where �̃� – is the trial displacement function; 
�̃� – is the test displacement function; 
𝝀 – is the vectoral Lagrange multiplier; 

𝒙 – is the position of an arbitrary point in the REV; 
𝑉– is the REV; 
«∙» – is the dot product. 
And: 

𝝈(�̃�(𝒙)) =  

{
 
 

 
 
(�̅�𝑖 + �̃�(�̃�𝒊)) ∶  ℂ𝑢𝑐 ∀𝒙 ∈ 𝑉𝑢𝑐  

𝝈𝑖−1 + ∆𝝈𝑖  ∀𝒙 ∈ 𝑉ℎ𝑝

(�̅�𝑖 + �̃�(�̃�𝒊)) ∶ ℂ𝑤 ∀𝒙 ∈ 𝑉𝑤

(�̅�𝑖 + �̃�(�̃�𝒊)) ∶ ℂ𝑎𝑖𝑟  ∀𝒙 ∈ 𝑉𝑎𝑖𝑟

 ,   (9) 

�̃�(𝒖) =
𝟏

𝟐
(∇𝒖 + (∇𝒖)𝑇) ,   (10) 

where ℂ𝑤, ℂ𝑎𝑖𝑟  – is the fourth-order elasticity tensor of water and air, 
respectively; 

𝑉𝑢𝑐 , 𝑉ℎ𝑝, 𝑉𝑤, 𝑉𝑎𝑖𝑟 – are the subdomains of the REV referring to the 

phases of unhydrated cement, hydration products, water, and air, respec-
tively. 

The is the incremental of the stress tensor ∆𝝈𝑖 is expressed 
from (5), where ∆𝜺𝑖 = ∆�̅�𝑖 + ∆�̃�𝑖. 

 
Solidification of cement paste 
According to the solidification theory, increment of stiffness of cement 

paste during a hydration process is given in relation to increment of a 
cluster thickness, which is represented by increment of the volume of 
hydration products (see Figure 1), and it is assumed that the properties of 
clusters do not vary with time [9]. The total number of fictitious clusters is 
equal to the number of time intervals. 

The above principle can be easily applied to discrete REV, where a 
separate cluster is considered as a set of hydration product voxels that 
have been produced at 𝑖-th time interval. The use of the voxel-based 
microstructural model, for instance [9], allows creating a history of the 
formation of such clusters, as well as to keep the spatial position of the 
cluster voxels in the REV. 

This also means that the finite elements within a mesh subdomain be-
longing to each cluster can be identified and explicitly associated with the 
stress-strain relation on the corresponding time interval unlike the classical 
approach where the fictitious clusters are assumed to be a dimensionless 
variable that is equal to the increment in degree of hydration. 

 
Modelling results 
The Portland cement paste with parameters reported in Table 1 was 

used for the simulation. 
The parameters of the constitutive phases of cement paste report in 

Table 2. The elastic properties of the phases in Table 2 were taken ac-
cording to [19]. 

 
Table 1  – Parameters of cement paste 

Mix proportions, kg/m3 Water to cement 
ratio 

Density of cement, 
kg/m3 

Fineness of cement, 
m2/kg 

Mineral composition of cement (mass %) 
Portland Cement Water 

370 185 0,5 3150 345 
C3S: 54,5; C2S: 17,3; C3A: 8,9;  

C4AF: 7,6; Gypsum: 5 
 
Table 2 – Parameters of the constitutive phases of cement paste 

Parameter 
Phase 

𝐶3𝑆 𝐶2𝑆 𝐶3𝐴 𝐶4𝐴𝐹 𝐶𝑆𝐻 𝐶𝐻 𝐶6𝐴𝑆3̅𝐻32 𝐶4𝐴𝑆̅𝐻12 𝐶3𝐴𝐻6 𝐹𝐻3 Gypsum 

Young's modulus, 
GPa 

137,4 135,5 145,2 150,8 23,8 43,5 24,1 43,2 93,8 22,4 44,5 

Poisson's ratio 0,299 0,297 0,278 0,318 0,24 0,294 0,321 0,292 0,32 0,25 0,33 

Aspect ratio 1,0 1,0 1,0 1,0 0,01 0,1 100 10 1,0 1,0 1,0 
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The stiffness characteristics of water: the bulk modulus is 2,2 GPa, 
the Poisson's ratio is 0,499. The stiffness characteristics of air were taken 
to be close to zero. 

The REV resolution of 10 voxels/edge was used in simulation to re-
duce the computational cost. 

Six elementary load cases consisting of macroscopic uniaxial strain 
and shear solicitations were applied at each time step by assigning con-
stant unit values 𝜀�̅�𝑗: �̅� = 𝒆𝑖⨂𝒆𝑖 – for uniaxial strain, and 

 �̅� =
1

2
(𝒆𝑖⨂𝒆𝑗 + 𝒆𝑗⨂𝒆𝑖) – for shear strain        (11)        

where 𝒆𝑖 – is the unitary bases; 
«⨂» – is the tensor product. 
Two additional creep compliance functions 𝐽(𝑡, 𝑡′) were used for a 

comparative analysis of the effective properties: 
1) adapted ACI model [20]: 

𝐽(𝑡, 𝑡′) =
1+𝜑(𝑡,𝑡′)

𝐸ℎ𝑝(𝑡
′)

; (𝑡, 𝑡′) = 2,35 ∙
(𝑡−𝑡′)

0,6

10+ (𝑡−𝑡′)0,6
 ,        (12) 

where 𝐸ℎ𝑝(𝑡
′) – is the effective elastic modulus of hydration products. 

2) adapted CEB MC90 model [14]: 

𝐽(𝑡, 𝑡′) =
1

𝐸ℎ𝑝(𝑡
′)
+

𝜑(𝑡,𝑡′)

𝐸ℎ𝑝,28
; 𝜑(𝑡, 𝑡′) = [

(𝑡−𝑡′)

500+(𝑡−𝑡′)
]
0,3

,   (13) 

where 𝐸ℎ𝑝,28 – is the effective elastic modulus of hydration products at 

28 days, 33 GPa. 
To evaluate the stiffness tensor considering the percolation of the 

solid phase of cement paste, a power law in the following normalized 
form was used: 

ℂ𝑒𝑓𝑓 = ℂ𝑒𝑓𝑓
𝐹𝐸𝐴 (

𝛼−𝛼𝑝𝑒𝑟

1−𝛼𝑝𝑒𝑟
)
𝛾

 ,    (14) 

where ℂ𝑒𝑓𝑓
𝐹𝐸𝐴 – is the effective fourth-order stiffness tensor of cement 

paste according to the FEA-based homogenization; 
𝛼 – is the hydration degree of cement; 
𝛼𝑝𝑒𝑟  – is the hydration degree of cement corresponding to the per-

colation threshold of the solid phase; 
𝛾 – is the exponent, 1. 
The modeling results are presented in in Figures 2 and 3. 
 

 
 

Figure 2 – Effective behavior of cement paste 
 

Conclusions 
1. Modelling the effective stiffness characteristics of cement paste 

is a rather difficult task, due to the combination of the facts that its struc-
ture consists of randomly distributed phases with an arbitrary geometry, 
and a solid phase has viscoelastic behaviour. 

2. The article presents the approach to solving the problem of ef-
fective stiffness characteristics of cement paste given the above issues 
based on a FEA homogenization makes it possible to evaluate its effec-
tive properties for arbitrary phase geometry, throw introducing into the 
variational formulation the numerical inversion of the Stieltjes integral 
describing the constitutive model of viscoelastic of the solid phase of 
cement paste. 

3. An important advantage of above approach is that the voxel REV 
used to generate the mesh can also implement solidification theory prin-
ciples to express the strain and stress history associated not with fictitious 
but with each identified cluster formed during the hydration process. 

 

 
 

Figure 3 – Effective behavior of cement paste based on non-linear FEA-
based  homogenization using different creep models 
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