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Abstract 
The design of rigid reinforced concrete slabs of foundations, slabs, road surfaces is based on calculation models, which are developed on a 

relatively limited number of experimental studies, in most cases requiring quite large material and time costs. The complex stress-strain state occurring 
in stiff reinforced concrete base and pavement slabs under load, especially under cyclic dynamic loading, can often lead to cracking and failure of the 
slabs. In this paper, reinforced concrete slabs of a container yard pavement were investigated for load bearing from the wheels of a reach stacker 
(container loading vehicle) travelling on the surface. Existing models for the design of such slabs typically consider the slab loaded by a single local load 
applied to an edge or corner of the slab from the wheels of a moving vehicle. In fact, there may be two wheels on the slab, resulting in more unfavorable 
conditions. The application of the finite element method in such problems is quite laborious as it requires highly skilled design engineers and 
considerable time, making the design routine and of limited use. This paper investigates an alternative approach based on the application of an artificial 
convolutional neural network (CNN) with U-Net architecture, which provides a reasonably accurate prediction of stresses in the slab much faster and 
simpler compared to the finite element method. The paper presents the architecture of the neural network with an indication of the features and stages 
of its training. Statistical analysis of the calculation results is performed, which allowed us to assess the reliability of the neural network model for 
determining stresses in reinforced concrete slabs on an elastic base. 
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ПРИМЕНЕНИЕ СВЁРТОЧНОЙ НЕЙРОННОЙ СЕТИ В РАСЧЁТАХ НАПРЯЖЕНИЙ ЖЕЛЕЗОБЕТОННЫХ ПЛИТ 

ДОРОЖНЫХ ПОКРЫТИЙ 

В. В. Молош, А. Е. Желткович, К. Г. Пархоц, И. Г. Томашев 

Реферат 
В основу проектирования жёстких железобетонных плит фундаментов, перекрытий, дорожных покрытий положены расчётные модели, 

которые разработаны на относительно ограниченном количестве экспериментальных исследований, в большинстве случаев требующих 
достаточно больших материальных и временных затрат. Сложное напряжённо-деформированное состояние, возникающее в жёстких 
железобетонных плитах фундаментов и дорожных покрытий под нагрузкой, и в особенности под циклической динамической нагрузкой, часто 
может приводить к образованию трещин и разрушению плит. В работе исследовались железобетонные плиты покрытия контейнерной 
площадки, которые воспринимают нагрузку от колёс перемещающегося по поверхности ричстакера (транспортного средства для погрузки 
контейнеров). Существующие модели для проектирования таких плит рассматривают как правило плиту, загруженную одной локальной 
нагрузкой, приложенной на краю или в углу плиты, от колеса передвигающегося транспорта. Фактически на плите могут располагаться два 
колеса, что приводит к более неблагоприятному состоянию. Применение метода конечных элементов в таких задачах является достаточно 
трудоёмким, так как требует высокого уровня квалификации инженеров-проектировщиков и значительных временных и трудовых затрат, что 
делает проектирование рутинным и мало целесообразным. В данной работе исследован альтернативный подход, основанный на применении 
искусственной свёрточной нейронной сети (CNN) с архитектурой U-Net, позволяющий получить достаточно точное предсказание напряжений 
в плите значительно быстрее и проще в сравнении с методом конечных элементов. В работе приведена архитектура нейронной сети с 
указанием особенностей и этапов её обучения. Выполнен статистический анализ результатов расчёта, позволивший оценить достоверность 
нейросетевой модели определения напряжений в железобетонных плитах на упругом основании. 

 
Ключевые слова: железобетонная плита, расчётная модель, свёрточная нейронная сеть, архитектура U-Net. 

 

 
1 Introduction 
Reinforced concrete pavement slabs have a non-linear behavior un-

der load with a complex stress-strain condition due to the inhomogeneous 
anisotropic structure of the composite material. In the design of such 
slabs, simplified design models are used, which are based on a number 
of assumptions and simplifications, and are most often developed based 
on the results of experimental tests of reduced slab fragments.  

Traditionally, the design of reinforced concrete slabs has been based 
on mathematical models, finite element methods (FEM) and experimental 
tests. Keeping a balance between safety and economic feasibility, over 
the last decades, researchers and engineers have proposed many calcu-
lation models [2–9] for reinforced concrete slabs, based on which various 
design standards have been developed and are used worldwide [1–6].  

Mathematical models of the resistance of rigid reinforced concrete 
slabs do not allow taking into account a large number of variables simul-
taneously due to the complexity and labor-intensive nature of this ap-
proach [1]. As a rule, such models take into account the behavior of each 
individual element of the structure, which in general for a structural system 
leads to the calculation of several equations, especially when the influence 
of more than one parameter on the resistance is taken into account, and 
complicates the complexity and duration of the calculation [11].  

The laboriousness and considerable duration of analytically solutions 
using mathematical models or the finite element method in the design of 
structures and the experimental determination of the behavior of structur-
al elements under load indicate, according to the authors [11], the need 
for reliable alternative prediction. 
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Due to the advances in computer science, many researchers have 
proposed to use soft computing methods to solve complex engineering 
problems in the last two decades [10–23]. The most popular of them are 
artificial neural networks, response surface methodology, fuzzy logic, 
particle swarm optimization and genetic algorithms [24]. 

In 1992, J. H. Garrett [25] reported that modelling with neural net-
works is much easier than with traditional mathematical models. Despite 
the fact that in neural networks the interconnections between its nodes 
(neurons) and minimization of the training error have a mathematical 
essence, mathematical formulas are not explicitly present in them. Artifi-
cial neural networks can be used to predict the strength of concrete and 
resistance of concrete structures with an error of less than 10 %. 

It is also noted in [11] that neural networks can be used as an alter-
native to mathematical models or experimental tests at the initial design 
stage to obtain a quick prediction of the behavior of reinforced concrete 
slabs under load, determining the magnitude of resistance and deflec-
tions of resistance and deflections. 

Neural networks are information processing systems whose architec-
ture is based on the endeavor to replicate the structure of biological neu-
ral systems [26]. Unlike traditional computer programs, in which infor-
mation is received and processed digitally in a sequential manner, neural 
networks store data in some way between individual neurons of the net-
work by means of selected weighting coefficients. Neural networks do not 
contain any algorithms to process the data. They are ‘trained’ to find 
relationships, often not fully realized, that create a structure of causal 
interactions between input parameters and the result obtained. 

Neural networks are able to model the behavior of systems with lim-
ited design costs and provide fast and reasonably accurate solutions in 
complex, uncertain and individual situations [27, 28]. Such prediction can 
be useful for a structural engineer in the preliminary design phase to 
determine the initial serviceability of a particular structure or to estimate 
the load carrying capacity of an in-service structure. 

O. Moselhi in 2002 [28] highlighted the following characteristics of 
neural networks that make them useful for solving different types of engi-
neering and scientific problems: 

 neural networks are based on algorithms in which computational 
procedures are performed in parallel and decentralized rather than se-
quentially, as in conventional computer programs, resulting in fast data 
processing; 

 they have a distributed memory represented by weight coeffi-
cients in the links distributed over all elements of the network; 

 neural networks remain functional even after several network el-
ements are damaged and fall out of network operation; 

 they have the ability to learn from examples; 
 allow predicting the behavior of systems with limited modelling 

capabilities;  
 allow fast and reasonably accurate solutions to complex, uncer-

tain and unusual situations. 
Thus, it can be noted that the use of neural networks in engineering and 

scientific tasks allows to simplify and speed up the calculation procedure. 
The main purpose of this work is:  
 approbation of convolutional neural network in the problems of 

calculation of rigid reinforced concrete slabs of covering of container 
yards erected constructed on the ground base, determination of stresses 
in the design of such slabs caused by external influences from the load-
ing vehicle (reach stacker) moving on the surface;  

 to show the possibility of using ‘soft computing’ with the applica-
tion of deep learning in tasks related to the design of building structures;  

 to show the advantages of convolutional neural networks in 
comparison with other models in determining the stresses in reinforced 
concrete slabs on the base under different variants of concentrated loads 
from reach stacker wheels; 

 evaluate the accuracy of stress values obtained using convolu-
tional neural network. 

 
2 Problem formulation and choice of neural network type 
The design of reinforced concrete slab foundation on the soil base, 

for which the calculation was performed, consisted of two reinforced con-
crete slabs, of which the lower one modelled the reinforced concrete base 
slab of the container yard with a thickness of h = 100 mm, the upper 

one – the reinforced concrete cover slab of the container yard with 
a thickness of h = 250 mm. 

In calculations for the base slab was taken concrete class С12/15 ac-
cording to [29] with modulus of elasticity E = 19000 MPa, for the cover 
slab - concrete class С32/40 according to [29] with modulus of elasticity 
E = 38000 MPa. The Poisson's ratio for both slabs was assumed µ = 0.2. 

The interaction of the upper and lower slabs with each other was 
modelled by means of elastic bonds of finite stiffness.  

Calculation of the slabs for vertical loads from the wheels of a (reach 
stacker) travelling on the surface was initially performed by the LIRA PC. 

The work of the elastic base was taken into account by means of the 
algorithm ‘Soil Model’ built into LIRA PC, which takes into account the 
elastic work of each layer of the soil base. Characteristics of soils in the 
layers were taken on the basis of engineering-geological surveys on the 
territory of the container site in the transshipment park of Brest-Northerly 
station in Brest.  

The calculation was carried out for the action of constant load from 
the own weight of the base slabs and the container yard covering and 
short-term load on each front wheel from the reach stacker FERRARI 
F500-RS2. The area of load application from the reach stacker wheels, 
according to its technical specifications, was assumed to be A = 0,36 m2. 
The value of the load from the reach stacker wheels was varied in the range 
from 150 to 900 kN to form a database for training the neural network. 

The classification of neural networks developed to date is quite ex-
tensive. A perceptron with one hidden layer is a universal approximater, 
i.e. it is capable of approximating any continuous function with any de-
gree of accuracy if a continuous, monotonically increasing, bounded 
function is used as the activation function of neural elements of the hid-
den layer [30]. Multilayer perceptron can be used for pattern classifica-
tion, prediction and control tasks. Recurrent networks can be used for 
processing dynamic data, temporal patterns, solving prediction problems, 
system identification, speech recognition, natural language processing 
and control. Convolutional neural networks (CNN), which are a further 
development of multilayer perceptron, are widely used for image pro-
cessing, and, unlike multilayer perceptron, they allow to take into account 
image topology and retain predictive properties in case of shifts, scaling 
and other distortions of the input image. Many other types of neural net-
works are also known.  

Since the distribution of stresses, strains deformations or vertical dis-
placements on the slab surface has similarity with the image, the authors 
of the paper decided to use convolutional neural network (CNN) to 
achieve the goal. 

 
3 Data for neural network training 
The dataset used in this study to train the CNN was obtained through 

parametric modelling in LIRA PC. A total of 125 numerical simulations 
(images) were performed with the inherent ability to vary at different lev-
els three parameters: 1) the magnitude of the load from the wheels travel-
ling on the surface of the container yard slab of the reach stacker with the 
container; 2) the location of the two front most loaded wheels on the sur-
face of the slab; 3) the shape of the container yard cover slab in plan. 
The 125 numerical calculations were divided into two groups: 100 calcu-
lations were designed to train the CNN to predict the magnitude of 
stresses in the slab distributed over its surface; 25 calculations were 
designed to evaluate the accuracy of the developed CNN model. 

The initial data intended for the formation of CNN feature maps char-
acterizing the recognized image were generated using two different 
methods.  

In the first case (model 1), the raw data were fed as four digital fea-
ture maps of dimensionality 56  56.  

The first feature map, the shape feature, is designed to describe the 
shape of the slab by means of zeros and units. In this map, the body of 
the slab is described by units and the empty space by zeros.  

The second feature map is the load map. The area to which the 
wheel load is applied is marked in the map with elements indicating the 
magnitude of the load applied to the corresponding area. The non-loaded 
area of the slab in the map is marked with zero elements.  

The third and fourth feature maps describe the location of the reach 
stacker wheel load on the slab surface. In each of these maps, the center 
of the reach stacker wheel load area is described by a zero, and all other 
elements of the map represent the distance from this center to the corre-
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sponding point on the slab surface. The third map describes the load 
position of the first wheel and the fourth map describes the load position 
of the second wheel. 

In the second case (model 2), the input data were fed as a single dig-
ital feature map of dimension 56  56, which displayed the coordinates of 
the slab points in 0.1 m increments and the magnitude of the vertical 
concentrated load on the slab at each coordinate. 

The output was to obtain the stresses in the slab distributed over its 
surface. The stresses obtained for CNN training in LIRA PC were formed 
into a stress map, in which each element represented the stresses in the 
corresponding point of the reinforced concrete slab. 

 
4 Neural network architecture and algorithm 
A convolutional neural network (CNN) with U-Net architecture was 

used to predict the stress distribution on the surface of a reinforced con-
crete slab. U-Net is considered one of the standard CNN architectures for 
image segmentation tasks, when it is necessary not only to define the 

whole image class, but also to segment its regions by class, to create a 
mask that will divide the image into several classes. [31]. There is a per-
ception that a very large number of annotated training samples are re-
quired to successfully train deep neural networks. However, the study 
[31] presents a CNN with U-Net architecture that relies on the active use 
of additional data to make better use of the available annotated samples. 
The authors of [31] show that the network they developed can be trained 
on a very small number of images and outperforms the previous best 
method for a number of neuron segmentation tasks on electron micro-
scopic tubes. 

The architecture of the convolutional neural network used by the au-
thors of this paper is shown in Figure 1. It consists of two parts – encoder 
(«convolutional») and decoder («unfolding deconvolution»). Encoder 
converts the input image into a multidimensional feature representation. 
It performs the feature extraction function. Decoder creates a segmented 
image based on the features extracted from the convolutional part of the 
network. 

 

 
 

Figure 1 – Schematic of the applied CNN model with U-Net architecture with a single pixel at the lowest resolution. Each colored parallelepiped 
corresponds to a multi-channel feature map. The number of channels is indicated by the first digit (before @) in the map parameter signature. 

The map dimensions are indicated behind the @ sign in the map parameter caption. Transparent fields represent copied feature maps 
for the concatenate operation. The following parameters are labelled with letters: Conv 2D – Convolution 2D – 2D convolution; 

BN – Batch Normalization – Batch Normalization of data; LR – Leaky ReLU – activation function; R – ReLU – activation function; 
T – Conv2DTranspose – 2D transposed convolution layer; D – Dropout – regularization method designed to reduce network overfitting 

 
The input was an image of an externally loaded slab with dimensions 

of 5,6  5,6 m, which were converted into three feature maps of dimen-
sions 64  64. The feature map responsible for the shape of the slab was 
not considered at this stage of research as it was unchanged. The convo-
lution represents a digital filter in which training was performed using the 
sliding window method [30] by means of weighted summation of values in 
the map cells (neurons) and weighting coefficients – coefficients of the 
convolution kernel. A sliding window is otherwise referred to as a local 
receptive field or filter kernel for the corresponding (usually one) neuron 
in the feature map (each receptive field in the input image space is 
mapped to a different neuron in each feature map). The total number of 
different synaptic connections in the convolutional layer is: 

 2

1( ) 1V C M p  , (1) 

where C1 is the convolutional layer designation and its number, p2 is the 
total number of elements of the receptive field (kernels). 

From expression (1) follows the peculiarity that the use of convolu-
tional network reduces the total number of tunable customizable synaptic 
connections of a convolutional network in comparison with multilayer 
perceptron due to the use of identical neurons in each feature map [30].  

The result of ‘sliding’ the kernel, in this paper sized 4  4 in steps 
of 2, across the entire image is written into a new image (a new feature 
map). At each layer, the coding block collapses the three-dimensional 
matrix, reducing the number of sampling points of the map by half and 
increasing the number of features (channels) responsible for the charac-
teristic features (stress magnitude) of individual nodes of the network. To 
preserve the dimensions of the feature map output and capture extreme 
values, we added rows and columns to the right and left, as well as top 
and bottom, filled with zeros in the feature map (padding procedure). 

If we represent the pixels of the input image in one-dimensional 
space, then the output value of the ij-th neuron for the k-th feature map in 
the convolutional layer is defined as [30] 
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 k k

ij ijy F S , (2) 

k k k

ij cij c ij

c

S w x T  , (3) 

where 
21,c p ; F is the activation function; 

k

ijS  – weighted sum of 

the ij-th neuron in the k- th feature map; 
k

cijw  – weighting factor between 

the c-th neuron of the input layer and the ij-th neuron in the k-th feature 

map; 
k

ijT  – threshold value of the ij-th neuron in the k-th feature map. 

Each feature map obtained by convolution reflects the same local 
features in all parts of the image. It represents a set of neurons, each of 
which has the higher value, the more the associated image fragment 
resembles a kernels.  

At each stage of convolution, we performed batch normalization of 
the obtained data (Batch Normalization – BN in Figure 1), which allows to 
improve performance and stabilize the network, and rectification by a 
linear activation block Leaky ReLU (LR in Figure 1).  

The second part of the network, «decoder» is a mirror image of the 
first. The image size needs to be restored to the original image size. 
To this end, up-sampling layers are used in combination with convolu-
tional layers. Each layer in up-sampling represents the process of inverse 
convolution of the feature map, accompanied by doubling of its size and 
halving of the number of feature channels followed by batch normaliza-
tion. The dropout layer following the batch normalization turns off at ran-
dom (temporarily excludes from training) a certain percentage of neurons 
in the network at each training step, which helps to prevent overdepend-
ence of the model on specific paths and nodes in the network leading to 
overtraining [33]. The probability p with which each neuron will be exclud-
ed is typically between 0.2 and 0.5. The feature map obtained in this layer 
is concatenated with the corresponding trimmed feature map from the 
convolution layer and straightened by the linear activation unit ReLU. 
The last layer uses convolution 1  1 to map each 64-component feature 
vector to the correct number of classes. 

 
5 Neural network training 
It should be noted that in this study the number of trained parame-

ters, which was 98673 in model 1 and 98545 in model 2, exceeds the 
number of images on which the model was trained, which, according to 
many researchers, is a drawback of the model.  

When training in convolutional neural networks, the whole image or lo-
cal regions (patches) around an image pixel can be provided as input data. 
The authors of [31] note that when optimizing computations by stochastic 
gradient descent, the method of convolution over the whole image is identi-
cal to training over local areas (patch). The authors of [31] did not find that 
patch training provides faster or better convergence for dense prediction, 
while whole-image training is, in their opinion, quite efficient and effective. 

In [34], the authors are based on an elegant architecture, the so-
called fully convolutional network proposed in [31]. They modify and ex-
tend this architecture so that it works with a small number of training 
images, by dividing images into local regions (patches), and performs 
more accurate image segmentation. The main idea of [31] is to supple-
ment the usual convolutional network with sequential layers, in which the 
pooling operators are replaced by up-sampling operators (up-sampling or 
sampling operator). Thus, according to the authors, these layers increase 
the resolution of the output signal. For localization, the high-resolution 
features obtained during narrowing are combined with up-sampled output 
data (concatenate). As a result, the subsequent convolution layer re-
ceives more accurate input data. 

An important change in the neural network architecture presented in 
[34], the authors note the presence of a large number of feature channels 
in the up-sampling procedure, which allow the network to transfer contex-
tual information to layers with higher resolution. As a consequence, the 
expanding path (decoder) is more or less symmetric to the narrowing 
path (encoder) and yields a U-shaped architecture. The network does not 
have fully connected layers and uses only the valid part of each convolu-
tion, i.e., the segmentation map contains only those pixels for which full 
context is available in the input image. This strategy, according to 
the authors of [34], allows seamless segmentation of arbitrarily large 
images. To predict pixels in the boundary region of the image, the miss-

ing context is extrapolated by mirroring the input image. This procedure is 
important for applying the network to large images, since otherwise the 
resolution would be limited by the CPU memory. 

The authors [34] emphasize that their U-Net CNN can recognize lo-
cal area, has a much larger amount of training data in the form of local 
areas (patch) than the number of training images and has a high predic-
tive ability. 

Thus, it can be noted that the existing opinion that the training sam-
ple size should be equal to the size of the trained parameters in order to 
prevent overtraining of the network is currently debatable. The architec-
ture of modern neural networks can be configured in such a way as to 
allow training on a small training sample size and achieve a sufficiently 
high predictive ability. 

In this work, the authors used a two-dimensional convolutional neural 
network (CNN) with U-Net architecture to predict the stress distribution on 
the surface of a reinforced concrete slab using the stochastic gradient 
descent (SGD) method for training.  

The training of the neural network, as mentioned above, is carried 
out using the Batch Normalization method by the error back propagation 
method according to the provisions given in [32]. In the batch normaliza-
tion method, some layers of the neural network are fed with pre-
processed data having zero mathematical expectation and unit variance. 

The rectification function was used as neuron activation functions, by 
which neuron output values can be calculated as: 

, 0,
( )

, 0,

k k

ij ijk k

ij ij k k

ij ij

S S
y F S

kS S

 
  



 (4) 

where 
k

ijS  – is the same as in formula (3); in convolution layers the 

coefficient k = 0.02 was taken, in unwrapped (deconvolution) layers – k = 
0. 

In both models (model 1 and model 2), 300 training epochs were as-
signed. To train the neural network, 100 samples were used with the ratio 
between training and validation samples being 97 % to 3 %. To test the 
prediction accuracy of the models, an additional test sample of 25 sam-
ples not used in the training of the network was used. 

When testing the neural network, the mean absolute error with L1 
norm [35, 36] was used, as this metric reflects well the accuracy of the 
prediction result. The loss function was defined as: 

arg

1
t et predictedE Y Y

n
  , (5) 

where n – number of training images, argt etY  – training data, 

predictedY  – predicted data. 

All stages of CNN creation, training and validation were implemented 
using the Python programming language and the open-source machine 
learning software library developed by Google to solve the tasks of build-
ing and training the Tensorflow neural network [37]. 

 
6 Results of calculations and their analysis 
As a result of this study, it was found that the input data layout in 

model 1 was better than in model 2. This is evidenced by the speed and 
quality of training of the neural network, as well as by the numerical sta-
tistical evaluation of the reliability of the coincidence between the training 
values obtained by finite element calculation and the stress values pre-
dicted by the neural network. A rather close coincidence of training and 
validation sampling errors in Model 1 is observed after 120 epochs of 
training and is maintained until the end of training (Figure 2a). The diver-
gence of training and validation sampling errors is about 17 %. In model 
2, the training and validation sampling errors are quite different. While the 
training sampling error decreases to 15 % during the training process, the 
validation sampling error fluctuates within 50 % almost during the whole 
training process (Figure 2b). In addition, the curve of variation of the train-
ing sampling error obtained by model 1 is smoother than by model 2, 
which indicates a greater stability of neural network training in the first 
case. The validation sampling error variation curve obtained by model 1 is 
also smoother. 
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Figure 2 – Parameters of neural network training according to model 1 (a) and model 2 (b) 

 
To evaluate the accuracy of stresses in reinforced concrete slabs 

predicted using neural network, we used well known mathematical statis-
tics: mean absolute error (MAE), standard deviation (RMSE), Pearson 
correlation coefficient (r), coefficient of determination (R2). In addition, we 
determined the value of correction factor b for the mean deviation of train-

ing and predicted stress values, the mean error value of models – , 

obtained from the error vector , and the coefficient of variation V (of the 

error vector ), calculated according to the procedure given in Appen-
dix D of СН 0.01.01 [38]. The specified statistical parameters are given 
in Table 1. 
 

Table 1 – Statistical parameters characterizing the degree of accura-
cy of the developed neural network models 
Model RMSE MAE r R2 b  V 
Model 1 0,478 0,305 0,924 0,854 0,928 0,428 0,015 
Model 2 0,637 0,424 0,862 0,733 0,853 0,658 0,146 
 

The overall distribution of training and model 1 and model 2 predicted 
stresses in reinforced concrete slabs is shown in Figures 3 and 4, and the 
ratio of training and model 1 and model 2 predicted stresses in reinforced 
concrete slabs is shown in Figure 5. 

 
 

Figure 3 – Distribution of stresses predicted by model 1 (a) and training (b) in reinforced concrete slabs 
 

 
 

Figure 4 – Distribution of stresses predicted by model 2 (a) and training (b) in reinforced concrete slabs 
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Figure 5 – Ratio of training and predicted stresses in reinforced concrete slabs using model 1 (a) and model 2 (b) 
 

The predicted stresses in reinforced concrete slabs using the neural 
network have a relatively satisfactory coincidence with the training values 
in the whole range of values. On average, the predicted values of stress-
es exceed the training values by 7 % for model 1 and by 15 % for model 
2, as evidenced by the value of the correction factor b (Figure 5, Table 1) 
for the mean deviation, determined by the expression: 

2

a p

p

b
 






,   (5) 

where а, p – are respectively the training (actual) and predicted stress-
es in the reinforced concrete slab [38]. 

Taking into account the small number of the training sample, this 
characterizes the predictive ability of the models as relatively high, but 
insufficiently safe. It is also impossible to speak about high density of 
distribution of predicted stress values along the line of training values. 
Most of the predicted values, which is about 85–90 %, deviate from it 
within 25 %. The maximum deviation, more typical for small stress val-
ues, is about 80 % (Figure 5). 

The relatively low density of stress distribution is evidenced by the 
value of the mean absolute error, which for model 1 – MAE = 0,305, and 
for model 2 – MAE = 0,424. Relative to the mean value of stresses in 
reinforced concrete slabs, which is 0,938 MPa for the test sample, the 
mean absolute error (MAE) is 33 % and 45 %, respectively. The standard 
deviation for models 1 and 2 respectively are: RMSE = 0,478 and 
RMSE = 0,637.  

It is accepted that computational models with a coefficient of deter-
mination above 0,8 and a correlation coefficient above 0,9 are considered 
good enough. When the coefficient of determination is equal to 1, there is 
a functional dependence between the compared values. In our study, 
when comparing training and predicted stresses, the values of correlation 
coefficient (for models 1 and 2 respectively: r = 0,924; 0,862) and coeffi-
cient of determination (for models 1 and 2 respectively: R 2 = 0,854; 
0,733) meet the above criteria only for model 1 (Table 1).  

The coefficient of variation of the error vector , equals to 0,015 and 
0,146 for models 1 and 2, respectively, is less than the value of 0,33, which 
indicates a sufficiently high homogeneity of the studied data set [39]. 

Thus, it follows from the results of the statistical study that model 1 
more accurately predicts the magnitude of stresses in the slab. The reason 
for this may lie in the input data for training, which in the first model are fed 
in the form of feature maps and form a common multilayer image of the 
object. Each feature map conveys the parameters of one layer of this im-
age. All maps are united into a single image by the common geometric 
shape of the object. In the second model there is only one feature map, and 
the general geometry of the image is viewed only indirectly through the 
space coordinates, which are endowed with the necessary features. 

7 Conclusions 
Mathematical models of resistance of rigid reinforced concrete slabs 

do not allow to take into account a large number of variables simultane-
ously due to the complexity and labor-intensive nature of this approach. 
As a rule, such models take into account the behavior of each individual 
element of the structure, which in general for the structural system leads 
to the calculation of several equations, especially when taking into ac-
count the influence of more than one parameter on the resistance. This 
feature complicates the complexity and duration of the calculation and 
necessitates reliable alternative predictions.  

As reported by many research papers, modelling the behavior of en-
gineering structures using neural networks is much easier than using 
traditional mathematical models. 

Neural networks can be used as an alternative to mathematical mod-
els or experimental tests at the initial design stage to obtain rapid predic-
tion of the behavior of reinforced concrete slabs under load, determining 
the magnitude of resistance and deflections. 

Neural networks are able to model the behavior of systems at limited 
design costs and provide fast and reasonably accurate solutions in com-
plex, uncertain and individual situations.  

Analyzing the results of the statistical study shows that model 1 is 
more accurate in predicting the magnitude of stresses in the slab due to a 
more efficient feedforward. 

In general, despite the fact that most of the statistical parameters do 
not have the best values, the predictive ability of the models based on 
convolutional neural network with u-net architecture can be considered 
high enough.  

The main reason for the error of the models is the small sample dataset 
size of training data, which requires replenishment of the sample, retraining 
of the neural network and subsequent assessment of its reliability. 
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