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Abstract 
The purpose of this paper is to demonstrate the capabilities of convolutional neural networks in mechanics-related problems, in particular, in the 

design of monolithic self-stressed slabs on the base. In order to simplify the procedure of designing and calculating the displacements of slabs on the 
base has been developed a method that combines the advantages of theoretical models, and neural network technologies. The paper shows the possibility 
of using "soft computing", and also points out the promising potential of convolutional neural networks in predicting forced displacements in slabs of 
different geometrical shape. 
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ДВУМЕРНАЯ СВЁРТОЧНАЯ НЕЙРОСЕТЬ ПРИ ПРОЕКТИРОВАНИИ МОНОЛИТНЫХ САМОНАПРЯЖЕННЫХ ПЛИТ 
НА ОСНОВАНИИ 

А. Е. Желткович, K. Г. Пархоц, В. В. Молош, Хаотянь Цзинь, Шань Сюй 
Реферат 
Целью настоящей статьи является демонстрация возможностей свёрточных нейросетей в задачах, связанных с механикой, в частности 

при проектировании монолитных самонапряжённых плит на основании. С целью упрощения процедуры проектирования и расчета 
перемещений плит по основанию был разработан метод, сочетающий в себе преимущества теоретических моделей и нейросетевых 
технологий. В статье показана возможность использования "мягких вычислений", а также отмечен перспективный потенциал свёрточных 
нейронных сетей в прогнозировании вынужденных перемещений в плитах различной геометрической формы. 

 
Ключевые слова: свёрточная нейронная сеть, нейроны, плиты на основании, самонапряженный бетон, гибрид. 
 

 
The aim is to obtain an improved method for slab design 
The ultimate goal of this research is to create a slab design method 

that combines the advantages of neural network technologies and theoret-
ical models. This paper discusses the first step in realizing this goal – the 
creation of a so-called hybrid, which should combine the advantages of 

theoretical models, finite element methods, biosimilar models, and neural 
network technologies. The step-by-step realization of the goal requires: 

1. To illustrate the possibility of convergence of mechanics and neu-
rotechnology. 

Figure 1 – Design of slabs with holes of different shapes [1]
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2. To show the possibility of using "soft computing" with the applica-
tion of deep learning in tasks related to design. 

3. To show the advantages of convolutional neural networks in pre-
dicting forced displacements in slabs on a base when there is a deficit (or 
absence) of initial data on displacements in the area of technological holes. 

 
Key prerequisites 
In some cases, even at the design stage, the slab design provides for 

the presence of holes of various shapes, both along the contour and in the 
body of the slab (Fig. 1). Thus, for example, when installing slabs in the 
shops of production buildings, machine shops of nuclear power plants, at 
other facilities, in already existing premises, it is necessary to provide in 
advance how the slab will behave in the area of the enveloped holes. 

The solution of such problems on determination of displacements, 
stress-strain state (SSS), in closed form is either very labor-intensive or not 
achievable at all. 

The existing approaches related to the use of finite element models 
are known to have certain and sometimes very significant disadvantages. 
Among them we can mention: 1 – application of temperature effects to de-
scribe the free deformations of concrete during curing; 2 – nonlinear kinet-
ics of concrete curing (in the time period up to 28 days) is not taken into 
account; 3 – nonlinear change of concrete temperature during the course 
of chemical reactions in the initial period of curing is not taken into account. 

 
Hard & Soft Computing - from competition to synthesis 
In order to simplify the procedure of designing such slabs, we propose 

a joint application of a spectrum of methods. For this purpose the main role 
is given to the development and training of a 2D convolutional neural net-
work (CNN) capable of working with multidimensional data matrices [2]. 

 
Problem statement 
At the first stage, the task of intelligent solution search was set for a 

displacement in test slabs (slabs on which the neural network's prediction 
ability was tested). At the same time, when training the neural network, 
there was no information about displacement in the area of holes in the 
central part of the slabs. In other words – in all training slabs technological 
holes were made along the perimeter. In the test ones, the holes were lo-
cated in the center. 

For this purpose, using the solution obtained in the closed form [3] for 
strip-slabs, displacements in characteristic points along the length of a 
number of strip-slabs were determined, from which, at the next stage, slabs 
of different geometric shapes were made up.  

At the same time, the samples differed in the shape and location of 
holes. Next, two-dimensional matrices describing the displacements of the 
nodal points of the slabs were compiled.  

For this purpose, using the solution obtained in the closed form [3] for 
strip-slabs, displacements in characteristic points along the length of a 
number of strip-slabs were determined, from which, at the next stage, slabs 
of different geometric shapes were made up. At the same time, the 
samples differed in the shape and location of holes. Next, two-dimensional 
matrices describing the displacements of the nodal points of the slabs were 
compiled.  

The location of the nodal points was determined using radius vectors 
drawn from the geometric center of the slab to a specific grid intersection 
with a step of 0.4x0.4 m.  

It was required to determine the displacements in OXY axes for the 
test slabs with dimensions 4x4x0.1 m., having technological holes in the 
center – 1.2x1.2 m., as well as 0.4x0.4 m. 

 
Preparing samples for training 
To train the convolutional neural network, a sample of 21x7 different 

slabs was created (Fig. 2, the slab without holes is not shown). 
Two types of data were used: topology of the nodes of the coordinate 

grid "breaking" the slab and shape parameters of the slab with holes; the 
second type included geometric characteristics of the slab as a whole, 
physical and mechanical characteristics of the self-stressing concrete and 
characteristics of the contact layer in the slab-base system.  

 
 

Figure 2 – A sample of 20 different slabs with peripheral holes for training 
the convolutional NN 

 
To obtain the slab parameters, the slabs were marked into 

11x11 points (nodes) with values of distances from the slab center and dis-
placements defined for each grid node. The displacements of the grid 
nodes were used as target output values of the CNN. The resulting data 
were recorded as matrices that were fed to the input of the CNN. Data were 
stored in separate directories with csv files (each of the 7 directories con-
tained 21 subdirectories with files for coordinates and displacements). This 
study tested several options for coding data describing slab holes (through 
"0" and through "–1"). 

 
CNN framework for predicting displacement 
A convolutional neural network combines three approaches in image 

processing. These are the use of a local receptive field for each neuron of 
the convolutional layer, the formation of convolutional layers as a set of 
maps whose neural elements have identical synaptic connections, and the 
presence of subsampling layer maps that increase the network's resistance 
to distortions [4, 5, 6, 7]. 

One of the reasons for high CNN performance, according to the au-
thors [4], is the use of identical neurons in each map, which makes it pos-
sible to reduce the number of customizable synaptic connections of the 
network. 

From a technical point of view, this task is similar to image transfor-
mation. Therefore, the Pix-to-pix architecture was used [8]. The Pix-to-pix 
architecture consists of two blocks, an encoder and a decoder with con-
nections between them (fig. 3). 

 

 

 
 

Figure 3 – Convolutional neural network with Pix-to-pix architecture [9], 
and diagrams of displacements in slabs with small and large center holes 

at the "output" of the CNN 
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All the steps of creating the convolutional NN, training and validation 
were implemented using the Python programming language and the Ten-
sorflow framework [10].   

Due to the pix-to-pix nature of the CNN, the two-dimensional data was 
enlarged to the number of grid nodes, 16x16 (with total 256 features), be-
fore being submitted for training. Two models were investigated, model #1 
used the value "0" in the process of holes coding, model #2 used "–1". 
Simultaneously the task was set to identify the most optimal ratio between 
validation and training samples, as well as the number of training epochs. 
Thus, in both models from 50 to 100 training epochs were assigned. In 
models with 50 training epochs for optimal regularization, 75 % of the initial 
data for the training dataset were selected (randomly), and 25 % of the 
data were left for testing the quality of the model. In models with 
100 training epochs, the ratio between the validation and training samples 
was 20 % versus 80 %.  

The developed two-dimensional convolutional neural network works 
as follows: a list with three-dimensional matrices for training describing the 
features inherent in the slab is fed to the input. The first dimension is re-
sponsible for the "length coordinates of the grid points", the second for the 
"width coordinates", and the third for the "distance" of the grid nodes from 
the center of the slab. 

At each layer, the encoder block wraps up the three-dimensional ma-
trix, reducing the number of points of the slab grid by half and increasing 
the number of features responsible for the characteristic features of defor-
mation in individual patterns – grid nodes. The convolution continues until 
a single point remains.  

Then the inverse de-convolution to the previous size starts, where the 
output of the CNN "waits" for a matrix of displacements at characteristic 
points of the slab. The “sliding window” method is used for image 
scanning [4]. A sliding window is otherwise called a local receptive field or 
filter kernel for the corresponding (usually one) neuron of a feature map 
(each receptive field in the input image space is mapped to a separate 
neuron in each feature map). If the filter scans the image with stripe – s, 
the number of neurons in each feature map is generally calculated by the 
formula: 

( ) 





 +

−
×





 +

−
= 111 s

pn
s

pnCD .        (1) 

Where: p x p is the size of the filter kernel, n x n – the dimensionality 
of the original image. 

As follows from the last expression, the use of a convolutional network 
reduces the total number of configurable synaptic connections compared 
to a multilayer perceptron due to the use of identical neurons in each 
feature map [4].  

The convolution layers of the encoder block have the following 
sequence of the number of feature maps and corresponding neurons in 
them: 8@8x8, 16@4x4, 32@2x2, 32@1x1. Similarly for the decoder block 
(fig. 3). The grid pitch of one filter kernel – 4x4 (fig. 4a). The filter kernels 
in this study work like independent neural networks. The filter kernel 
"passes" over the slab image (a grid with a certain step or stripe) shifting 
(at each step) by 2 values (thus, the "stripe" parameter was set 
equal – "2"). A "same padding" method (fig. 4c) was applied to the input 
data. Padding adds rows and columns of zeros around the data, which 
allow the kernel filter to start from the corner of the data and keep the size 
of the output data.  

To determine the number of neurons in the first feature map (after the 
filter kernel passes through an image of size – 16x16), taking into account 
the padding method, one value is added to the existing 16x16 grid from the 
right and left, as well as from the top and bottom. Hence the final dimension 
of the incoming map is 18x18. Applying formula (1) [4] we obtain the 
number of neurons of the first feature map: 
( )1CD  = 
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418  = 8x8. Proceeding in a 

similar way for subsequent maps, we obtain – 4x4, 2x2, 1x1 neurons in 
convolutional layer maps. 

The decoder layers are followed by a layer – "dropout" (Fig. 4b), which 
"disconnects" the filter neurons with a probability of 50% to minimize the 
overtraining of the network. 

In the current study, the number of trained parameters exceeds the 
number of samples on which the model is trained, which is a drawback of 
the model. For the model to be built, the number of sample slabs should 
be at least 65000. At the moment the data of missing samples are being 
generated, which will be reflected in the nearest works. 

 

 

 

 

 

 

 

 

   

 
 
 

 
Figure 4 – Schemes: a) 4x4 filter kernel structure, b) "dropout" operator [11], c) “padding method” [12] 

 
 

b) a) 

c) 
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Mechanism of operation of ANN and a filter 
Each filter neuron is considered as an operator that changes the input 

data [4, 13, 14]. The ANN receives the values of grid node coordinates as 
input, while the signal at the output of the neuron is defined as follows: 

( )bwxfy iiacti +⋅= ∑ .         (2) 
Where: x and y – input and output signals of NN, w – weight parameter 

of synapse, b is a bias, actf  – the neuron activation functions – 
LeakyReLu for encoder and ReLu for decoder.  Since all data fed to the 
input and outputs of the convolutional neural network were normalized 
using Z-normalization, the activation of the last layer was performed using 
the function – Tanh. After training the neural network, the data was 
returned to the normal dimensionality using the "invers transformation". 

The value of the transformed function (1) at the output of the resulting 
neuron of the filter (in given case – 1 neuron, Fig. 4a). 

 
Normalization  
A number of methods are known in mathematical statistics: decimal 

scaling, minimum normalisation, normalisation by mean (Z-normalisation) 
and others [15]. In this paper has been applied normalisation by mean (to 
compare values of different dimensions, as well as to bring the data to a 
more convenient form for training a neural network). Z-normalisation sets 
the mean (mathematical expectation) and variance of the data and is 
represented by the formula: 

( ) ,/σµ−= xz                                                     (3) 
where: µ and σ  – mathematical expectation (mean) and standard 

deviation, respectively. 
 
Quality criteria for ANN performance   
When testing the neural network, the mean absolute error with L1 

norm [16, 17] was used, as this metric reflects the accuracy of the 
prediction result quite well.  The loss function was defined as: 

  ,1
arg∑ −= predictedett YY

n
E                      (4) 

where: n – number of examples, ettY arg – actual initial data, 

predictedY
 
– predicted values of the predicted parameter. 

 
 
 
 
 

Parametric optimization, gradient descent algorithm 
As optimizer has been used the method for stochastic optimization 

“Adam”. Adam [18] is a first-order-gradient-based algorithm of stochastic 
objective functions, based on adaptive estimates of lower-order 
moments [19]. 

The goal of parameter optimization is to find the minimum value of the 
loss function E. At each iteration, the algorithm updates the weight 
parameters w , as showed in function (5). 

n
n

nn m
v

~
~1 ⋅

+
−=+ ε

αωω  ,                                            (5) 

where: α=0.001 is the learning rate parameter, 2
tg – indicates the 

element-wise square g ⊙ g . 9.01 =β , 999.02 =β , and 
7101 −⋅=ε . All operations on vectors are element-wise. With t

1β  

and t
2β are denoted 1β  and 2β to the power t (t=0 at the first 

initializing). The 1st moment vector at the first initializing – 00 =m , 

2st moment vector at the first initializing – 00 =v , 0ω  – initial parameter 
vector, initializing by random generator. The weights are updated until the 
current and previous values converge.  

Was used the next algorithm [19]: 
1) 1+← tt ; 
2) ( )1−∇← ttwt wfg  – Get gradient w.r.t. stochastic objective at 

time-step t, i.e. the vector of partial derivatives of tf , w.r.t ( )w  
evaluated at time-step t; 

3) ( ) ttt gmm 111 1 ββ −+⋅← −  – Update biased first moment 
estimate; 

4) ( ) 2
212 1 ttt gvv ββ −+⋅← −  – Update biased second row 

moment estimate; 
5) ( )t

tt mm 11/~ β−←  – Compute bias-corrector first moment 
estimate; 

6) ( )t
tt vv 21/~ β−←  – Compute bias-corrector second row 

moment estimate; 

7) ( )εαωω +⋅−= − tttt vm ~/~
1  – Update parameters. 

 
 

Figure 5 – Gradient descent on the loss hypersurface [20] 
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where: ( )wf  is a noisy objective function: a stochastic scalar 
function that is differentiable w.r.t. parameters ω . 

After acquiring loss function value, the antigradient is computed, 
updating the synapse weights. Thus, using the gradient information, the 
optimal path to achieve the global minimum on the loss hypersurface is 
determined. 

 
Network Training 
Since the developed neural network is a convolutional network with 

many layers, the launch of 100 epochs on an “Intel” processor with 4 GB 
RAM and 2 GB video card lasted from several minutes to half an hour 
(depending from model to model). In order to optimize the process, have 
been decided to train CNN in remote access mode inside the Google Drive 
environment. Has been used Python 3 server accelerator based on Google 
Compute Engine. The time of passing 100 epochs was reduced 
to 5–10 seconds. 

 

Displacement results in slabs with center hole 
In the next step, the data were fed into the de-encoder and unwrapped. 

The CNN thus matched the data on geometric parameters (node 
coordinates, distances from the center, slab shape features, hole 
locations), with the data on displacements of the slab grid nodes used for 
training. The displacement information was translated into colors of a 
particular spectrum and displayed as an output image. In the center of 
figures 6a-d, 7a-d the color spectrum of displacements is displayed (the 
color corresponds to the magnitude of the displacements).  

In order to show that the prediction accuracy does not change 
significantly after 50 epochs of training (even when the training duration is 
doubled, i.e., up to 100 epochs), here presented plots of prediction of 
displacements in full-body slabs (fig. 6g-j, 7g-j). A comparative modeling 
analyze of the displacements (in full-body slabs on the base) has been 
carried out in the figures below (fig. 6e-g, 7e-g).  The relative and absolute 
errors in determining the displacements of the slabs are showed (fig. 6h-i, 
7h-i). 

  

   

 

 

 

 

 

 

 

 

 
Figure 6 – Displacements in slabs with a central holes, holes coded through "0":  

a) model #1–1, central hole 1.2x1.2 m, training-validation split 75/25 %, number of epoch – 50,   
b) model #1–2, central hole 0.4x0.4 m, training-validation split 75/25 %, number of epoch – 50,  
c) model #1–1, central hole 1.2x1.2 m, training-validation split 80/20 %, number of epoch – 100,   
d) model #1–2, central hole 0.4x0.4 m, training-validation split 80/20 %, number of epoch – 100, 

i) model #1–1, full-body slab, training-validation split 75/25 %, number of epoch – 50, 
f) actual full-body slab 2x2x0.1 m, 

g) model #1–2, full-body slab, training-validation split 80/20 %, number of epoch – 100, 
h) model #1–1, relative and absolute errors, i) model #1–2, relative and absolute errors  

b) 

c) a) 

d) 

f) e) g) 

h) i) 
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Figure 7 – Displacements in slabs with a central holes, holes coded through "–1":  

a) model #2–1, central hole 1.2x1.2 m, training-validation split 75/25 %, number of epoch – 50,  
b) model #2–2, central hole 0.4x0.4 m, training-validation split 75/25 %, number of epoch – 50, 
c) model #2–1, central hole 1.2x1.2 m, training-validation split 80/20 %, number of epoch – 100,  
d) model #2–2, central hole 0.4x0.4 m, training-validation split 80/20 %, number of epoch – 100, 

i) model #2–1, full-body slab, training-validation split 75/25 %, number of epoch – 50, 
f) actual full-body slab 2x2x0.1 m, 

g) model #2–2, full-body slab, training-validation split 80/20 %, number of epoch – 100, 
h) model #2–1, relative and absolute errors, 
i) model #2–2, relative and absolute errors  

 
Conclusions: 
1. Several options for coding data describing holes in slabs (via "0" 

and via "–1") are investigated. Two models were created to test the quality 
of prediction of slab displacements. The relative error for a full-body slab 
(taken over 256 points, i.e., the entire 16x16 grid), when used model #1–1 
was 17.44 %; for model #1–2 – 22.44 %; for model #2–1 – 15.37%; and to 
model #2–2 – 13.52 %. 

2. We assume that model #1 has smaller absolute errors due to the 
coding of holes with the number "0". It was easier for the model to establish 
the absolute difference between the displacements of full-body slabs 
(which have no hole in the center, where the value is strictly "0") and the 
displacements of the central region of the test slabs (the central region of 
the slab – the light pixels in the plots have zero displacements). In 
model #2, where coding was performed through "–1" relative errors in 
determining the displacements are somewhat smaller, at the same time we 

observe large absolute errors. This is primarily due to the peculiarity of 
“holes” coding. At the same time, such coding, apparently, complicates the 
training of the convolutional network, which is evident from the comparison 
of loss diagrams in models #1 and #2.  

3. The developed neural network, trained on the basis of 
147 samples, is quite confident in predicting displacements in slabs with a 
central hole, using data only from peripheral cutouts. If the training sample 
is increased, the relative errors as well as losses in training of the SNN can 
be significantly reduced.  
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